• 제목/요약/키워드: 잡음추정

검색결과 1,025건 처리시간 0.036초

영상 잡음제거를 위한 개선된 BAMS 필터 (The Improved BAMS Filter for Image Denoising)

  • 우창용;박남천
    • 융합신호처리학회논문지
    • /
    • 제11권4호
    • /
    • pp.270-277
    • /
    • 2010
  • BAMS(Baysian Adaptive Multiresolution Smoother) 필터는 모의실험 없이 Bayes 추정에 기초한 웨이블릿 축소기법에 의해 잡음을 제거하며 따라서 실시간 처리가 가능하다. BAMS 필터에 의한 영상잡음 제거 성능은 웨이블릿 분해 각 대역의 잡음분산에 크게 의존한다. 기존의 BAMS 필터는 웨이블릿 분해의 고주파 대역에서 사분위 통계량을 이용하여 잡음분산을 추정하여 잡음을 제거하였다. 본 논문에서는 영상신호의 중간대역을 포함한 잡음제거를 위해 변형된 사분위 통계량 및 모노토닉 변환으로 중간대역 잡음편차 추정하고 이를 이용해서 중간대역 및 고주파 대역의 영상잡음을 제거한 결과 중간대역의 잡음을 제거하므로 약 2[dB]정도의 PSNR이 증가하였으며 잡음편차가 작은 영상의 잡음제거에서도 효과가 있었다.

양자화 잡음 모델에 근거한 블록기반 동영상 부호화에서의 후처리 (Postprocessing in Block-Based Video Coding Based on a Quantization Noise Model)

  • 문기웅;장익훈;김남철
    • 한국통신학회논문지
    • /
    • 제26권8B호
    • /
    • pp.1129-1140
    • /
    • 2001
  • 본 논문에서는 블록기반 동영상 부호화에서 나타나는 양자화 잡음을 그 특성에 맞게 모델링을 하고, 이를 기반으로 웨이블렛 변환(wavelet transform)을 이용하여 양자화 잡음을 제거하는 후처리 방법을 제안한다. 제안된 방법에서는 양자화 잡음을 특정 프로화일(profile)로 표현되는 블록화 잡음과 비에지 화소(non-edge pixel)에서 백색 가우시안 특성을 가지는 나머지 잡음의 합으로 모델링 한다. 이러한 양자화 잡음의 모델을 기반으로 정칙화 미분(regularized differentiation)을 표현하는 Mallat의 1차원 웨이브렛 변환을 이용하여 영상복원 관점에서 각각의 잡음을 제거한다. 먼저, 웨이브렛 영역의 블록경계에서 임펄스로 나타나는 블록화 잡음 성분들의 크기를 추정하여 줄임으로 해서 블록화 잡음을 제거한다. 이때 임펄스 크기의 추정은 메디안 필터와 양자화 파라미터(quantization parameter), 그리고 국부 활동도(local activity)를 이용하여 이루어진다. 그리고 나머지 잡음은 비에지 화소에서 연역치화(soft-thresholding)을 수행함으로써 제거한다. 이러한 후처리 방법의 구현은 실시간 응용을 위해 웨이브렛 필터를 이용하여 근사적으로 공간 영역에서 이루어진다. 실험 결과, 제안된 방법이 다양한 영상과 압축률에 대해 MPEG-4 VM(verification model) 후처리 필터(post-filter)보다 PSNR 성능뿐만 아니라 주관적 화질면에서도 우수함을 확인하였다.

  • PDF

회귀적 방법에 의한 모우드 변수 규명에 관한 연구 (A Study on the Recursive Identification of Modal Parameters)

  • 고장욱;이재응
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1995년도 춘계학술대회논문집; 전남대학교, 19 May 1995
    • /
    • pp.147-152
    • /
    • 1995
  • 실험에 의한 모우드 해석 방법들은 1980년대부터 활발히 연구되어 많은 새로운 방법들이 개발되어 발표되었다. 그러나 개발된 대부분의 방법들은 측정된 데이타를 일괄처리하는 밸치(또는 off-line) 방법들이다. 최근에는 시간에 따라서 변하는 구조물의 동특성을 규명하는 분야에 모우드 해석 방법이 응용되어 사용되고 있다. 이러한 응용분야에서는 모우드 변수들의 변화되는 값을 새로운 데이타가 샘플링 될 때마다 그 값들을 수정하면서 추정할 수 있는 회귀적인(recursive 또는 on-line) 방법을 사용하여야 한다. Davies와 Hammond[1]는 회귀적 선형 자승법(Recursive Least Squares : RLS)을 이용하여 모우드 변수를 구하고 이를 벧치방법인 Instrumental Variable 방법과 Fourier 방법의 결과와 비교하였다. 그러나, 그 결과에서 보여준것처럼 RLS 방법은 잡음 대 시호비가 낮을 때에만 모우드 변수 값들을 정확하게 추정할 수 있었다. Sundararajan과 Montgomrey[2]는 회귀적 선형 최소자승 격자필터(lattice filter)를 이용하여 구조물의 차수(order)와 고유진동형, 그리고 진폭을 결정한 후 이를 토대로 회귀적 gradient형태의 방정식 오차 규명 방법(equation-error identification algorithm)에 의하여 모우드 변수들을 추정하였다. 이 방법은 2차원 격자구조물의 모우드 변수 추정에 사용되었으며, 또한 적응모우드제어에도 성공적으로 이용되었다. 그러나, 이 방법도 잡음 대 신호비가 낮은 환경에서만 사용할 수 있다는 단점이 있다. 위에서 언급한 방법들은 모두 RLS 방법을 기초로 하여 개발되었으나, RLS 방법은 전형적인 결정적(deterministic)방법으로서 잡음이 섞인 데이타를 처리하기에는 부적절한 방법임이 널리 알려진 사실이다[3]. 최근에 Ben Mrad와 Fassois[4]는 신호에 잡음이 존재하여도 이를 잘 처리할 수 있는 확률적(stochastic) 방법을 개발하여 기존의 결정적 방법들과 그 결과를 비교하였다. 그러나, 개발된 방법은 응답 신호에 백색잡음(white noise)이 섞이는 특수한 경우에만 사용할 수 있게 만들어져서 이 방법의 실질적인 적용에는 어려움이 있다. 본 연구에서는 기존의 방법들의 단점을 극복할 수 있는 새로운 회귀적 모우드 변수 규명 방법을 개발하였다. 이는 Fassois와 Lee가 ARMAX모델의 계수를 효율적으로 추정하기 위하여 개발한 뱉치방법인 Suboptimum Maximum Likelihood 방법[5]를 기초로 하여 개발하였다. 개발된 방법의 장점은 응답 신호에 유색잡음이 존재하여도 모우드 변수들을 항상 정확하게 구할 수 있으며, 또한 알고리즘의 안정성이 보장된 것이다.

  • PDF

HMM과 $H_\infty$필터를 이용한 강인한 음성 향상 (Robust Speech Enhancement Using HMM and $H_\infty$ Filter)

  • 이기용;김준일
    • 한국음향학회지
    • /
    • 제23권7호
    • /
    • pp.540-547
    • /
    • 2004
  • 칼만/위너 필터에 근거한 음성향상 알고리즘은 잡음의 선험적 지식을 요구하고, 음성신호와 추정신호의 오차분산을 최소화하는데 중점을 두고 있어, 잡음에 대한 통계적 추정에 오류가 있을 경우 결과에 악영향을 미칠 수 있다. 그러나 H/sub ∞/필터는 잡음에 대한 어떠한 가정이나 선험적 지식을 요구하지 않으며, 최소상계 (Least Upper Bound)를 적용하여 추정된 모든 신호들로부터 최소에러 신호를 갖는 최상의 추정신호를 찾아내므로 칼만/위너 필터보다 잡음의 변화에 강인하다. 본 논문에서는 학습 신호로부터 은닉 마코프 모델의 파라미터를 추정한 후, 오염된 신호를 고정된 개수의 H/sub ∞/필터를 통과시켜 각 출력에 가중된 합으로 향상된 음성 신호를 구하는 다중 H/sub ∞/필터에 의한 강인한 음성향상 방법을 제안한다. 제안된 방법의 성능 평가를 위하여 음성 향상 시간과 신호 대 잡음비를 비교한 결과, 기존의 방법에 비해 계산량은 다소 증가하지만 신호 대 잡음비는 약 1∼2dB 향상 되었다.

잡음에 강한 음성 인식에서 SNR 기준 함수를 사용한 가우시안 함수 변형 및 결정에 관한 연구 (A Study on Variation and Determination of Gaussian function Using SNR Criteria Function for Robust Speech Recognition)

  • 전선도;강철호
    • 한국음향학회지
    • /
    • 제18권7호
    • /
    • pp.112-117
    • /
    • 1999
  • 잡음에 강한 음성인식시스템을 위하여 주파수 차감법을 사용할 경우 음성 신호마저 차감하여 신호를 더욱 부식시키는 경우가 존재한다. 본 연구에서는 이러한 경우를 위해서 프레임 마다 추정 잡음과 차감 신호의 SNR(Signal to Noise Ratio) 함수로부터 반연속 HMM(Hidden Markov Model)의 가우시안 함수를 변형 및 결정하는 방법을 제안한다. 이 방법의 타당성을 위해 프레임마다 추정 잡음의 오류 정도가 추정 잡음의 크기와 관계함을 신호 파형 형태로써 보였으며, 이러한 이유에서 SNR을 기준으로 가우시안 함수를 변형 및 결정하게 된다. 실험에서 80㎞/h 이상의 속도로 달리는 차량 내에서 배경 잡음과 음성이 혼합되었을 때의 음성 인식율을 평가하였다. 그 결과 주파수 차감한 경우와 차감하지 않은 경우에 비해 본 논문에서 제안한 SNR에 의한 가우시안 결정 방법이 더욱 향상된 인식율을 보였다.

  • PDF

레이더 측정 잡음 추정을 통한 기동 표적 추적 성능 향상 (Performance Improvement of Maneuvering Target Tracking with Radar Measurement Noise Estimation)

  • 전대근;은연주;고현;염찬홍
    • 한국항공우주학회지
    • /
    • 제39권1호
    • /
    • pp.25-32
    • /
    • 2011
  • 항공관제용 감시자료 처리시스템에 의한 기동 표적 추적에 있어서 레이더의 측정 잡음 분산은 상태 추정기의 입력으로서, 추적 정확도에 영향을 주는 주요한 요소 중 하나이다. 본 연구에서는 레이더의 측정 잡음 분산을 상수가 아닌 변수로 지정하여, 다중 IMM 필터의 우도함수를 통해 매 시간 측정 잡음 분산을 실시간으로 추정하는 알고리즘을 제시하였다. Monte Carlo 시뮬레이션 결과 측정 잡음 분산 값을 실제 값 대비 5% 이내 수준으로 예측함을 확인하였고, 이를 통해 기동 표적 추적 성능을 향상시킬 수 있음을 확인하였다.

웨이블릿 계수의 혼합 모델링을 이용한 영상 잡음 제거 (Image Denoising via Mixture Modeling of Wavelet Coefficients)

  • 엄일규;우동헌;김유신
    • 한국통신학회논문지
    • /
    • 제28권8C호
    • /
    • pp.788-794
    • /
    • 2003
  • 영상 잡음의 제거를 위해서는 영상에 대한 통계적 모델을 설정하고, 잡음이 섞인 영상에서 원 영상의 분산을 정확하게 추정하는 것이 매우 중요하다. 추정된 원 영상의 분산을 이용하여 잡음 영상에 Wiener 필터를 적용함으로써 영상의 잡음을 제거하는 것이 일반적이다. 본 논문에서는 영상의 잡음을 제거하기 위해 웨이블릿 계수의 새로운 통계적 혼합 모델링을 제안한다. 먼저 웨이블릿 계수의 중요한 특성을 획득할 수 있는 중요도(重要圖)를 작성하기 위해 간단한 분류 방법을 사용한다. 분류된 중요도에 혼합 모델의 상태 확률을 계산하고, 이를 이용하여 신호의 분산을 추정한다. 실험 결과를 통하여 제안 방법이 기존의 방법보다 0.1-0.2㏈ 정도 높은 PSNR을 보여준다는 것을 알 수 있다.

스택여파기를 이용한 형태학적 영상 윤곽선 검출기 (The morphological edge detector by using stack filters)

  • 유지상;김선용;문규
    • 한국통신학회논문지
    • /
    • 제21권7호
    • /
    • pp.1696-1705
    • /
    • 1996
  • 중앙값여파기의 일반화된 형태인 스택여파기의 이론을 써서 잡음으로 왜곡된 영상에서의 윤곽선 검출기를 연구하였다. 이 논문에서 제안된 추정값 차이기법(difference of estimates:DoE)은 충격성 잡음의 환경에서 매우 효율적인 기법으로 기존의 형태학적 접근 방법을 개선하였다고 할 수 있다. 이 기법에서는 잡음이 있는 영상에 스택필터를 사용하여 잡음이 없는 원영상의 불림 영상(diated version)과 녹임 영상(eroded version)을 최적으로 추정한다. 그 결과로 얻어진 추정 영상의 차이에 적절한 문턱값 연산을 적용하여 윤곽선을 얻을 수 있다. 이 기법을 써서 얻은 결과는 가산상 정규 잡음의 경우에는 Canny의 기법을 이용하여 얻은 결과와 상응하는 성능을 갖고, 충격성 잡음의 경우에는 훨씬 좋은 성능을 보여준다.

  • PDF

영상의 잡음 감소를 위한 적응 RLR L-필터 (An Adaptive RLR L-Filter for Noise Reduction in Images)

  • 김수용;배성호
    • 한국멀티미디어학회논문지
    • /
    • 제12권1호
    • /
    • pp.26-30
    • /
    • 2009
  • 본 논문에서는 로버스트 통계학의 순위 추정을 기반으로 하고 순서통계학의 L-추정자를 이용한 적응 순환 최소 순위(RLR) L-필터를 제안한다. 제안한 RLR-L 필터는 비선형 적응알고리즘을 가진 비선형 적응 필터로서 오차의 분산측정을 최소화하는 관점의 최적 필터로 가변적인 스텝 크기를 가지며 적응한다. 제안한 필터는 영상신호와 같은 비정체 신호나 가우시안 잡음 또는 임펄스 잡음과 같은 비선형 채널에 적합하다.

  • PDF

결정적 잡음 모델을 이용한 효율적인 잡음음성 인식 접근 방법 (An Efficient Approach for Noise Robust Speech Recognition by Using the Deterministic Noise Model)

  • 정용주
    • 한국음향학회지
    • /
    • 제21권6호
    • /
    • pp.559-565
    • /
    • 2002
  • 본 논문에서는 잡음음성 HMM (Hidden Markov Model)의 파라미터 값을 효율적으로 추정하는 새로운 방법에 대해서 제안하였다. 기존의 방법들에서 잡음음성의 HMM 파라미터 값을 추정하기 위해서는 먼저 잡음음성의 생성 모델을 가정한 후, 잡음과 원래 음성의 통계 모델을 이용하여 잡음음성 HMM 파라미터 값을 해석적으로 얻게 된다. 하지만 이러한 해석적 방법은 항상 단순화의 가정을 취하게 되므로 실제의 잡음음성 HMM 분포에 정확히 근접하는데 어려움을 겪게 된다. 본 연구에서는 이러한 가정을 하지 않고, 원래의 깨끗한 음성에서 얻을 수 있는 HMM의 파라미터 값을 사용하고 결정적 잡음 모델을 이용함으로서 기존의 방법보다 인식시에 계산량을 줄일 수 있었을 뿐만 아니라 인식 성능의 향상도 이룰 수 있었다.