• Title/Summary/Keyword: 잔차분산

Search Result 58, Processing Time 0.022 seconds

Long-gap Filling Method for the Coastal Monitoring Data (해양모니터링 자료의 장기결측 보충 기법)

  • Cho, Hong-Yeon;Lee, Gi-Seop;Lee, Uk-Jae
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.6
    • /
    • pp.333-344
    • /
    • 2021
  • Technique for the long-gap filling that occur frequently in ocean monitoring data is developed. The method estimates the unknown values of the long-gap by the summation of the estimated trend and selected residual components of the given missing intervals. The method was used to impute the data of the long-term missing interval of about 1 month, such as temperature and water temperature of the Ulleungdo ocean buoy data. The imputed data showed differences depending on the monitoring parameters, but it was found that the variation pattern was appropriately reproduced. Although this method causes bias and variance errors due to trend and residual components estimation, it was found that the bias error of statistical measure estimation due to long-term missing is greatly reduced. The mean, and the 90% confidence intervals of the gap-filling model's RMS errors are 0.93 and 0.35~1.95, respectively.

Rainfall Prediction of Seoul Area by the State-Vector Model (상태벡터 모형에 의한 서울지역의 강우예측)

  • Chu, Chul
    • Water for future
    • /
    • v.28 no.5
    • /
    • pp.219-233
    • /
    • 1995
  • A non-stationary multivariate model is selected in which the mean and variance of rainfall are not temporally or spatially constant. And the rainfall prediction system is constructed which uses the recursive estimation algorithm, Kalman filter, to estimate system states and parameters of rainfall model simulataneously. The on-line, real-time, multivariate short-term, rainfall prediction for multi-stations and lead-times is carried out through the estimation of non-stationary mean and variance by the storm counter method, the normalized residual covariance and rainfall speed. The results of rainfall prediction system model agree with those generated by non-stationary multivariate model. The longer the lead time is, the larger the root mean square error becomes and the further the model efficiency decreases form 1. Thus, the accuracy of the rainfall prediction decreases as the lead time gets longer. Also it shows that the mean obtained by storm counter method constitutes the most significant part of the rainfall structure.

  • PDF

Asymmetric GARCH model via Yeo-Johnson transformation (Yeo-Johnson 변환을 통한 비대칭 GARCH 모형)

  • Hwan Sik Jung;Sinsup Cho;In-Kwon Yeo
    • The Korean Journal of Applied Statistics
    • /
    • v.37 no.1
    • /
    • pp.39-48
    • /
    • 2024
  • In this paper, we introduce an extended GARCH model designed to address asymmetric leverage effects. The variance in the standard GARCH model is composed of past conditional variances and past squared residuals. However, it is not possible to model asymmetric leverage effects with squared residuals alone, so in this paper, we propose a new extended GARCH model to explain the leverage effects using the Yeo-Johnson transformation which adjusts transformation parameter to make asymmetric data more normal or symmetric. We utilize the reverse properties of Yeo-Johnson transformation to model asymmetric volatility. We investigate the characteristics of the proposed model and parameter estimation. We also explore how to derive forecasts and forecast intervals in the proposed model. We compare it with standard GARCH and other extended GARCH models that model asymmetric leverage effects through empirical data analysis.

Nonparametric method using linear statistics in analysis of covariance model (공분산분석에서 선형위치통계량을 이용한 비모수 검정법)

  • Choi, Yoonjung;Kim, Dongjae
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.3
    • /
    • pp.427-439
    • /
    • 2017
  • Quade (1967) proposed RANK ANCOVA, which is a nonparametric method to test differences between treatments when there are covariates. Hwang and Kim (2012) also proposed a joint placement test on covariate-adjusted residuals. In this paper, we proposed a new nonparametric method to control the effect of covariate on a response variable that uses linear statistics on covariate adjusted-residuals. The score function used in the linear statistics was proposed by Jeon and Kim (2016). Monte Carlo simulation is also conducted to compare the empirical powers of the proposed method with previous methods.

A STUDY ON THE GROSS ERROR DETECTION AND ELIMINATION IN BUNDLE BLOCK ADJUSTMENT (번들블럭조정에 있어서 과대오차 탐색 및 제거에 관한 연구)

  • 유복모;조기성;신성웅
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.9 no.1
    • /
    • pp.47-54
    • /
    • 1991
  • In this study, the accuracy of three dimensional location was improved by self calibration bundle method with additional parameter, which is to correct systematic error through detection and elimination of the gross error from updated reference variance for observation values in photogram-metry. In this study, with the result of comparing accuracy of each method, correcting systematic error is more effective after gross error detection and when observation values are contained more than two gross error the point with maximum correlation value is detected by masking effect of least square adjustment.

  • PDF

On Rice Estimator in Simple Regression Models with Outliers (이상치가 존재하는 단순회귀모형에서 Rice 추정량에 관해서)

  • Park, Chun Gun
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.3
    • /
    • pp.511-520
    • /
    • 2013
  • Detection outliers and robust estimators are crucial in regression models with outliers. In such studies the focus is on detecting outliers and estimating the coefficients using leave-one-out. Our study introduces Rice estimator which is an error variance estimator without estimating the coefficients. In particular, we study a comparison of the statistical properties for Rice estimator with and without outliers in simple regression models.

Improvement of Rating Curve Fitting Considering Variance Function with Pseudo-likelihood Estimation (의사우도추정법에 의한 분산함수를 고려한 수위-유량 관계 곡선 산정법 개선)

  • Lee, Woo-Seok;Kim, Sang-Ug;Chung, Eun-Sung;Lee, Kil-Seong
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.8
    • /
    • pp.807-823
    • /
    • 2008
  • This paper presents a technique for estimating discharge rating curve parameters. In typical practical applications, the original non-linear rating curve is transformed into a simple linear regression model by log-transforming the measurement without examining the effect of log transformation. The model of pseudo-likelihood estimation is developed in this study to deal with heteroscedasticity of residuals in the original non-linear model. The parameters of rating curves and variance functions of errors are simultaneously estimated by the pseudo-likelihood estimation(P-LE) method. Simulated annealing, a global optimization technique, is adapted to minimize the log likelihood of the weighted residuals. The P-LE model was then applied to a hypothetical site where stage-discharge data were generated by incorporating various errors. Results of the P-LE model show reduced error values and narrower confidence intervals than those of the common log-transform linear least squares(LT-LR) model. Also, the limit of water levels for segmentation of discharge rating curve is estimated in the process of P-LE using the Heaviside function. Finally, model performance of the conventional log-transformed linear regression and the developed model, P-LE are computed and compared. After statistical simulation, the developed method is then applied to the real data sets from 5 gauge stations in the Geum River basin. It can be suggested that this developed strategy is applied to real sites to successfully determine weights taking into account error distributions from the observed discharge data.

Model Checking for Joint Modelling of Mean and Dispersion (평균과 산포의 동시 모형화에 대한 모형검토)

  • Ha, Il-Do;Lee, Woo-Dong;Cho, Geon-Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.8 no.2
    • /
    • pp.195-209
    • /
    • 1997
  • The joint modelling of mean and dispersion in quasi-likelihood models which greatly extend the scope of generalized linear models, is required in case that the dispersion parameter, the variance component of response variables, is not constant but changes by depending on any covariates. In this paper, by using statistical package GENSTAT(release 5.3.2, 1996) which makes a easily analyze real data through this joint modelling, we mention necessities that must consider this joint modelling rather than existing mean models through model checking based on graphic methods for esterase assay data introduced by Carrol and Ruppert(1987, pp.46-47), and then study methods finding reasonable joint model of mean and dispersion for this data.

  • PDF

Analysis and Forecast of Non-Stationary Monthly Steam Flow (비정상 월유량 시계열의 해석과 예측)

  • 이재형;선우중호
    • Water for future
    • /
    • v.11 no.2
    • /
    • pp.54-61
    • /
    • 1978
  • An attemption of synthesizing and forecasting of monthly river flow has been made by employing a linear stochastic difference equation model. As one of the linear stochestic difference equation model, an ARIMA Type is tested to find the suitability of the model to the monthly river flows. On the assumption of the stationary covariacne of differenced monthly river flows the model is identrfield and is evaluated so that the residuale have the minimum variance. Finally a test is performed to finld the residerals beings White noise. Monthly river flows at six stations in Han River Basin are applied for case studies. It was found that the difference operator is a good measure of forecasting the monthly river flow.

  • PDF

Multiresidual approximation of Scattered Volumetric Data with Volumetric Non-Uniform Rational B-Splines (분산형 볼륨 데이터의 VNURBS 기반 다중 잔차 근사법)

  • Park, S.K.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.12 no.1
    • /
    • pp.27-38
    • /
    • 2007
  • This paper describes a multiresidual approximation method for scattered volumetric data modeling. The approximation method employs a volumetric NURBS or VNURBS as a data interpolating function and proposes two multiresidual methods as a data modeling algorithm. One is called as the residual series method that constructs a sequence of VNURBS functions and their algebraic summation produces the desired approximation. The other is the residual merging method that merges all the VNURBS functions mentioned above into one equivalent function. The first one is designed to construct wavelet-type multiresolution models and also to achieve more accurate approximation. And the second is focused on its improvement of computational performance with the save fitting accuracy for more practical applications. The performance results of numerical examples demonstrate the usefulness of VNURBS approximation and the effectiveness of multiresidual methods. In addition, several graphical examples suggest that the VNURBS approximation is applicable to various applications such as surface modeling and fitting problems.