본 논문은 인터넷 문서 자동 분류 시스템의 구현에 대하여 논한다. 문서 자동분류 알고리즘을 설정하고, 역전파 학습 모델을 이용하여 문서의 범주화를 수행하는 시스템을 구축한다. 문서학습을 위해서 범주별 인터넷 문서들을 수집하고 수집한 문서에 대하여 카이제곱($\chi^2$)검정을 수행함으로써 범주화 자질을 추출한다. 이 범주화 자질을 바탕으로 하여 학습 및 분류 벡터 집합을 생성한다. 실험 결과의 평가로부터 본 논문에서 구현한 시스템이 유사도 계산을 이용한 문서의 분류 시스템보다 성능이 향상된 것을 알 수 있었다.
본 연구의 목적은 특허 문헌 분류에 가장 적합한 방법론을 발견하기 위하여 다양한 자질 추출 방법과 기계학습 및 딥러닝 모델을 살펴보고 실험을 통해 최적의 성능을 제공하는 방법론을 분석하는데 있다. 자질 추출 방법으로는 전통적인 BoW 방법과 분산표현 방식인 워드 임베딩 벡터를 비교 실험하고, 문헌 집합 구축 방식으로는 형태소 분석과 멀티그램을 이용하는 방식을 비교 검토하였다. 또한 전통적인 기계학습 모델과 딥러닝 모델을 이용하여 분류 성능을 검증하였다. 실험 결과, 분산표현 방법과 형태소 분석을 이용한 자질추출 방법을 기반으로 딥러닝 모델을 적용하였을 경우에 분류 성능이 가장 우수한 것으로 판명되었으며 섹션, 클래스, 서브클래스 분류 실험에서 전통적인 기계학습 방법에 비해 각각 5.71%, 18.84%, 21.53% 우수한 분류 성능을 보여주었다.
기존 웹 페이지 자동분류 연구는 일반적으로 학습 기반인 kNN(k-Nearest Neighbor), SVM(Support Vector Machine)과 통계 기반인 Bayesian classifier, NNA(Neural Network Algorithm)등 여러 종류의 분류작업에서 입증된 분류 기법을 사용하여 웹 페이지를 분류하였다. 하지만 인터넷 상의 방대한 양의 웹 페이지와 각 페이지로부터 나오는 많은 양의 자질들을 처리하기에는 공간적, 시간적 문제에 직면하게 된다. 그리고 분류 대상을 표현하기 위해 흔히 사용하는 단일(uni-gram) 자질 기반에서는 자질들 간의 관계 분석을 통해 자질에 정확한 의미를 부여하기 힘들다. 특히 본 논문의 분류 대상인 한글 웹 페이지의 자질인 한글 단어는 중의적인 의미를 가지는 경우가 많기 때문에 이러한 중의성이 분류 작업에 많은 영향을 미칠 수 있다. 잠재적 의미 분석 LSA(Latent Semantic Analysis) 분류기법은 선형 기법인 특이치 분해 SVD(Singular Value Decomposition)을 통해 행렬의 분해 및 차원 축소(dimension reduction)를 수행하여 대용량 데이터 집합의 분류를 효율적으로 수행하고, 또한 차원 축소를 통해 새로운 의미공간을 생성하여 자질들의 중의적 의미를 분석할 수 있으며 이 새로운 의미공간상에 분류 대상을 표현함으로써 분류 대상의 잠재적 의미를 분석할 수 있다. 하지만 LSA의 차원 축소는 전체 데이터의 표현 정도만을 고려할 뿐 분류하고자 하는 범주를 고려하지 않으며 또한 서로 다른 범주 간의 차별성을 고려하지 않기 때문에 축소된 차원 상에서 분류 시 서로 다른 범주 데이터간의 모호한 경계로 인해 안정된 분류 성능을 나타내지 못한다. 이에 본 논문은 새로운 의미공간(semantic space) 상에서 서로 다른 범주사이의 명확한 구분을 위한 특별한 차원 선택을 수행하여 최적의 차원 선택과 안정된 분류성능을 보이는 최적의 지도적 LSA을 소개한다. 제안한 지도적 LSA 방법은 기본 LSA 및 다른 지도적 LSA 방법들에 비해 저 차원 상에서 안정되고 더 높은 성능을 보였다. 또한 추가로 자질 생성 및 선택 시 불용어의 제거와 자질에 대한 가중치를 통계적인 학습을 통해 얻음으로써 더 높은 학습효과를 유도하였다.
최근 급변하는 사회와 함께 교육의 변화를 요구하는 목소리가 높아지면서, 교육의 질적 향상과 직결되어 있는 교사 전문성에 관한 논의가 활발히 이루어지고 있다. 이에 따라 교사의 자질을 향상, 발전시키기 위한 각종 교사 교육 프로그램이 제안되었고, 또한 그러한 프로그램의 효과를 확인하기 위해 다양한 연구들이 뒤따랐다. 특히 프로그램의 목적이 교사의 변화를 전제하고 있다는 점에서, 대부분의 연구들이 교사의 지식, 신념, 또는 실행 등 교사의 개인적 변화에 주안점을 두어 왔다. 그러나 교사의 마음(mind)은 사회적으로 형성된 것으로서(Edwards, 2001), 교사의 변화는 사회적 맥락과의 상호작용에 의해 중재되어 나타난다고 볼 수 있다. 즉 개인 주체가 어떻게 시스템 안에서 상호작용하는지, 집합적인 측면에 대한 탐색이 요구된다고 할 수 있다. 이에 본 연구는 교사- 연구자간 협력적 워크숍에서의 집합적 이해(collective understanding) 양상과 각 양상에 따른 사회적 중재과정을 살펴보기 위해 구성원간의 상호작용 자체를 분석하였다. 워크숍 기간 동안의 소그룹 활동을 녹화한 비디오 및 오디오 자료를 주 자료원으로 하였으며, 상호작용을 통해 드러난 집합적(collective) 측면을 포착하기 위해, 녹화물과 전사본을 상호작용 사회언어학(interactional sociolinguistic)에 근거하여 분석하였다. 또한 집합적 이해 양상에 따른 맥락적 요소들의 중재과정을 기술하기 위해 활동 시스템(activity system)을 도입하였다. 분석 결과, 참여교사들은 집합적 이해와 관련하여 갈등을 통해 지식을 구성하였으며, 활동 시스템 내 목적, 규칙, 역할 등에 의해 그 과정이 중재되고 있음을 확인하였다. 또한 교사가 가르치기 위해 어떻게 배우는지를 이해하기 위해서는 교사교육에 대한 사회문화적 관점이 필수이며, 교사의 전문적 담화가 교사의 전문성 발달과 관련하여 매우 중요한 역할을 하고 있음을 확인하였다.
문서 집합 내의 개념 또는 의미 관계의 자동 분석은 보다 효율적인 정보 획득과 단어 이상의 개념 수준에서의 문서간 비교를 가능케 한다. 본 논문에서는 다중요인모델에 기반 하여 텍스트 문서로부터 토픽들을 추출하고 이로부터 의미 커널(semantic kernel)을 구축하여 문서간 유사도를 측정하는 방안을 제시한다. 텍스트 문서는 내재된 토픽들의 다양한 결합에 의해 생성된다고 가정하며 하나의 토픽은 공통 주제에 관련되거나 적어도 자주 같이 나타나는 단어들의 집합으로 정의한다. 다중요인모델은 은닉층을 갖는 하나의 네트워크 형태로 표현되며, 토픽을 표현하는 단어 집합은 은닉노드로부터의 가중치가 높은 단어들로 구성된다. 일반적으로 이러한 다중요인 네트워크에서의 학습과 추론과정을 용이하게 하기 위해서는 근사적 확률 추정 기법이 요구되는데, 본 논문에서는 헬름홀츠 머신에 의한 방법을 활용한다. TDT-2 문서 집합에 대한 실험에서 토픽별로 관련 있는 단어 집합들을 추출할 수 있었으며, 4개의 텍스트 집합에 대한문서 검색 실험에서는 다중요인모델의 분석결과에 기반 한 의미 커널을 사용함으로써 기본 벡터공간 모델에 비해 평균정확도 면에서 통계적으로 유의한 수준의 성능 향상을 얻을 수 있었다.
본 논문에서는 구문패턴을 이용한 반자동 구문분석 말뭉치 구축도구를 제안한다. 일반적으로 구문분석 말뭉치를 구축하는 작업은 문법전문가의 많은 시간과 노력을 필요로 하고 있다. 본 논문은 구문분석 말뭉치를 구축할 때 수작업을 감소시켜 줄 수 있는 도구를 개발하기 위하여, 사용자가 정의하는 자질집합과 신뢰도를 바탕으로 구문패턴을 자동 추출하고 적용하는 방법을 제안한다. 소량의 말뭉치에서 실험한 결과, 구문패턴의 사용은 30%정도의 수작업을 감소시킬 수 있는 것으로 나타났다.
문서 내에 존재하는 개체들 간의 관계를 자동으로 추출할 때 다양한 형태의 문서 분석 결과를 활용할 수 있는데, 본 논문에서는 문장 내에 존재하는 각 단어의 predicate-argument 관계를 분석하여 자질로 활용하는 PAS 패턴 기반 관계 추출 시스템을 제안한다. 관계 종류별로 구축된 PAS 패턴 집합을 활용하여 관계 식별기를 개발하였고, 실험을 통하여 개발된 관계 식별기의 성능을 측정하였다. 실험 결과 개체 간의 유의미한 관계를 표현해주는 PAS 패턴이 관계 추출 작업에 유용한 정보임을 알 수 있었다.
의미역 결정은 입력된 문장 내 어절간의 의미 관계를 예측하기 위한 자연어처리 태스크이며, 핵심 서술어에 따라 상이한 의미역 집합들이 존재한다. 기존의 연구는 문장 내의 서술어의 개수만큼 입력 문장을 확장해 순차 태깅 문제로 접근한다. 본 연구에서는 확장된 입력 문장에 대해 구문 분석을 수행 후 추출된 문장 구조 정보를 의미역 결정 모델의 자질로 사용한다. 이를 위해 기존에 학습된 구문 분석 모델의 파라미터를 전이하여 논항의 위치를 예측한 후 파이프라인을 통해 의미역 결정 모델을 학습시킨다. ALBERT 사전학습 모델을 통해 입력 토큰의 표현을 얻은 후, 논항의 위치에 대응되는 표현을 따로 추상화하기 위한 계층형 트랜스포머 인코더 레이어 구조를 추가했다. 실험결과 Korean Propbank 데이터에 대해 F1 85.59의 성능을 보였다.
철도 선로전환기는 열차의 진로를 현재의 궤도에서 다른 궤도로 제어하는 장치이다. 선로전환기의 이상 상황은 탈선 등과 같은 심각한 문제를 발생할 수 있기 때문에, 선로전환기의 스트레스를 지속적으로 모니터링 하는 것은 매우 중요하다. 본 논문에서는 선로전환기가 작동할 때 발생하는 소리 정보를 이용하여 선로전환기의 스트레스를 탐지하는 시스템을 제안한다. 제안하는 시스템은 선로전환기의 동작 시 발생하는 소리 데이터로부터 자질 선택방법을 사용하여 스트레스 탐지에 유효한 감소된 차원의 자질 부분집합을 선택한 후, 기계학습의 대표적 모델인 SVM(Support Vector Machine)을 이용하여 선로전환기의 스트레스 상태 여부를 탐지한다. 테스트용 선로전환기를 실제 구동하며 수집한 소리 데이터를 이용하여, 본 논문에서 제안하는 시스템의 성능을 실험적으로 검증한 바 98%를 넘는 정확도를 확인하였다.
사용자 의도 예측 기술은 음성인식기의 탐색 공간을 줄이기 위한 후처리 방법으로 사용될 수 있으며, 시스템 의도 예측 기술은 유연한 응답 생성을 위한 전처리 방법으로 사용될 수 있다. 이러한 실용적인 필요성에 따라 본 논문에서는 화행과 개념열의 쌍으로 일반화된 화자의 의도를 예측하는 통계 모델을 제안한다. 단순한 화행 n-그램 통계만을 이용한 기존의 모델과는 다르게 제안 모델은 현재 발화까지의 대화 이력을 다양한 언어 레벨의 자질 집합(화행과 개념열 쌍의 n-그램, 단서 단어, 영역 프레임의 상태정보)으로 표현한다. 그리고 추출된 자질 집합을 CRFs(Conditional Random Fields)의 입력으로 사용하여 다음 발화의 의도를 예측한다. 일정 관리 영역에서 실험을 수행한 결과, 제안 모델은 사용자의 화행과 개념열 예측에서 각각 76.25%, 64.21%의 정확률을 보였다. 그리고 시스템의 화행과 개념열 예측에서 각각 88.11%, 87.19%의 정확률을 보였다. 또한 기존 모델과 비교하여 29.32% 높은 평균 정확률을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.