• Title/Summary/Keyword: 자율 경로 주행

Search Result 228, Processing Time 0.027 seconds

Optimized Global Path Planning of a Mobile Robot Using uDEAS (uDEAS를 이용한 이동 로봇의 최적 전역 경로 계획)

  • Kim, Jo-Hwan;Kim, Man-Seok;Choi, Min-Koo;Kim, Jong-Wook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.2
    • /
    • pp.268-275
    • /
    • 2011
  • This paper proposes two optimal path planning methods of a mobile robot using uDEAS (univariate Dynamic Encoding Algorithm for Searches). Before start of autonomous traveling, a self-controlled mobile robot must generate an optimal global path as soon as possible. To this end, numerical optimization method is applied to real time path generation of a mobile robot with an obstacle avoidance scheme and the basic path generation method based on the concept of knot and node points between start and goal points. The first improvement in the present work is to generate diagonal paths using three node points in the basic path. The second innovation is to make a smooth path plotted with the blending polynomial using uDEAS. Effectiveness of the proposed schemes are validated for several environments through simulation.

Development of a Vehicle Positioning Algorithm Using In-vehicle Sensors and Single Photo Resection and its Performance Evaluation (차량 내장 센서와 단영상 후방 교차법을 이용한 차량 위치 결정 알고리즘 개발 및 성능 평가)

  • Kim, Ho Jun;Lee, Im Pyeong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.25 no.2
    • /
    • pp.21-29
    • /
    • 2017
  • For the efficient and stable operation of autonomous vehicles or advanced driver assistance systems being actively studied nowadays, it is important to determine the positions of the vehicle accurately and economically. A satellite based navigation system is mainly used for positioning, but it has a limitation in signal blockage areas. To overcome this limitation, sensor fusion methods including additional sensors such as an inertial navigation system have been mainly proposed but the high sensor cost has been a problem. In this work, we develop a vehicle position estimation algorithm using in-vehicle sensors and a low-cost imaging sensor without any expensive additional sensor. We determine the vehicle positions using the velocity and yaw-rate of a car from the in-vehicle sensors and the position and attitude of the camera based on the single photo resection process. For the evaluation, we built a prototype system, acquired test data using the system, and estimated the trajectory. The proposed algorithm shows the accuracy of about 40% higher than an in-vehicle sensor only method.

The Development of Ecobot Robot for Friendly Environment Smart Home Appliance Application System (친환경 스마트 가전 응용 시스템용 Ecobot 로봇 플랫폼 개발)

  • Moon, Yong-Seon;Bae, Young-Chul;Cha, Hyun-Rok;Roh, Sang-Hyun;Park, Jong-Kyu
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.4
    • /
    • pp.480-485
    • /
    • 2010
  • In this paper, we developed mobile robot platform called Ecobot for the application system of friendly environment smart home appliance. Ecobot fulfills the purposes of monitoring of the healthy environment and guidance in the application system of friendly smart environment home appliance, home network formed by Zigbee network. For the healthy environment, the system contains monitoring sensor. Moreover, it continuously keeps the healthy environment by controlling the smart home appliances linkng with Zigbee network. And also using the URG-04LX laser distance sensor, it monitors indoor environment through autonomous moving and collision avoidance.

Realtime Generation of Grid Map for Autonomous Navigation Using the Digitalized Geographic Information (디지털지형정보 기반의 실시간 자율주행 격자지도 생성 연구)

  • Lee, Ho-Joo;Lee, Young-Il;Park, Yong-Woon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.539-547
    • /
    • 2011
  • In this paper, a method of generating path planning map is developed using digitalized geographic information such as FDB(Feature DataBase). FDB is widely used by the Army and needs to be applied to all weapon systems of newly developed. For the autonomous navigation of a robot, it is necessary to generate a path planning map by which a global path can be optimized. First, data included in FDB is analyzed in order to identify meaningful layers and attributes of which information can be used to generate the path planning map. Then for each of meaningful layers identified, a set of values of attributes in the layer is converted into the traverse cost using a matching table in which any combination of attribute values are matched into the corresponding traverse cost. For a certain region that is gridded, i.e., represented by a grid map, the traverse cost is extracted in a automatic manner for each gird of the region to generate the path planning map. Since multiple layers may be included in a single grid, an algorithm is developed to fusion several traverse costs. The proposed method is tested using a experimental program. Test results show that it can be a viable tool for generating the path planning map in real-time. The method can be used to generate other kinds of path planning maps using the digitalized geographic information as well.

Study on the Drivers' Response Characteristics Using Spectral Analysis of Car Following Data (차량 추종자료의 파동해석을 통한 운전자 반응 특성 연구)

  • CHAE, Chandle;OH, Sei-Chang;KIM, Youngho;LEE, Jun
    • Journal of Korean Society of Transportation
    • /
    • v.33 no.4
    • /
    • pp.405-416
    • /
    • 2015
  • This paper developed a method analyze drivers' response characteristics using spectral analysis with car following data. Cross-correlation function and cross spectrum are produced by Fourier transform from speed fluctuations of leading vehicle and following vehicle during the designated time ${\tau}$. Based on the analysis data, a process to calculate the reaction time and stimulus-adaption index of following vehicle was developed and 170 cases of field data was applied. It was reported average of 0.654 and 2.091 seconds of stimulus-adaption index and reaction time respectively. In conclusion, the developed indexes might contribute to enhance vehicle control of autonomous vehicle more efficient and safer.

Lane Detection based Open-Source Hardware according to Change Lane Conditions (오픈소스 하드웨어 기반 차선검출 기술에 대한 연구)

  • Kim, Jae Sang;Moon, Hae Min;Pan, Sung Bum
    • Smart Media Journal
    • /
    • v.6 no.3
    • /
    • pp.15-20
    • /
    • 2017
  • Recently, the automotive industry has been studied about driver assistance systems for helping drivers to drive their cars easily by integrating them with the IT technology. This study suggests a method of detecting lanes, robust to road condition changes and applicable to lane departure warning and autonomous vehicles mode. The proposed method uses the method of detecting candidate areas by using the Gaussian filter and by determining the Otsu threshold value and edge. Moreover, the proposed method uses lane gradient and width information through the Hough transform to detect lanes. The method uses road lane information detected before to detect dashed lines as well as solid lines, calculates routes in which the lanes will be located in the next frame to draw virtual lanes. The proposed algorithm was identified to be able to detect lanes in both dashed- and solid-line situations, and implement real-time processing where applied to Raspberry Pi 2 which is open source hardware.

Moving Path following and High Speed Precision Control of Autonomous Mobile Robot Using Fuzzy (퍼지를 이용한 자율 이동 로봇의 이동 경로 추종 및 고속 정밀 제어)

  • Lee, Won-Ho;Lee, Hyung-Woo;Kim, Sang-Heon;Jung, Jae-Young;Roh, Tae-Jung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.7
    • /
    • pp.907-913
    • /
    • 2004
  • The major interest of general mobile robot is making a route and following a maked route. But, In the case of robot that is in need of movement of partial high speed, the condition of dynamic limitation is exist, and in these conditions, it demands controlling against movements we want. In this paper, in respect of the following a route at the situation that don't have the environmental map, that is, unknown environments, to prevent the slide of moving robot or the overturn that can happen for it moves fast, we organize the dynamic condition of limitation using the fuzzy logic, and we obtain more safe and fast route tracing ability by changing the standard velocity. Especially, by modeling the line tracing mobile robot, we design the tracing controller against a realtime changing target, and using the fuzzy optimized velocity limitation controller, we confirm that our robot shows its stable tracing ability by limiting its velocity intelligently against the continuously changing line.

Microscopic Traffic Parameters Estimation from UAV Video Using Multiple Object Tracking of Deep Learning-based (다중객체추적 알고리즘을 활용한 드론 항공영상 기반 미시적 교통데이터 추출)

  • Jung, Bokyung;Seo, Sunghyuk;Park, Boogi;Bae, Sanghoon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.5
    • /
    • pp.83-99
    • /
    • 2021
  • With the advent of the fourth industrial revolution, studies on driving management and driving strategies of autonomous vehicles are emerging. While obtaining microscopic traffic data on vehicles is essential for such research, we also see that conventional traffic data collection methods cannot collect the driving behavior of individual vehicles. In this study, UAV videos were used to collect traffic data from the viewpoint of the aerial base that is microscopic. To overcome the limitations of the related research in the literature, the micro-traffic data were estimated using the multiple object tracking of deep learning and an image registration technique. As a result, the speed obtained error rates of MAE 3.49 km/h, RMSE 4.43 km/h, and MAPE 5.18 km/h, and the traffic obtained a precision of 98.07% and a recall of 97.86%.

Development of Potential-Function Based Motion Control Algorithm for Collision Avoidance Between Multiple Mobile Robots (포텐셜함수(Potential Function)를 이용한 자율주행로봇들간의 충돌예방을 위한 주행제어 알고리즘의 개발)

  • 이병룡
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.6
    • /
    • pp.107-115
    • /
    • 1998
  • A path planning using potential field method is very useful for the real-time navigation of mobile robots. However, the method needs high modeling cost to calculate the potential field because of complex preprocessing, and mobile robots may get stuck into local minima. In this paper, An efficient path planning algorithm for multiple mobile robots, based on the potential field method, was proposed. In the algorithm. the concepts of subgoals and obstacle priority were introduced. The subgoals can be used to escape local minima, or to design and change the paths of mobile robots in the work space. In obstacle priority, all the objects (obstacles and mobile robots) in the work space have their own priorities, and the object having lower priority should avoid the objects having higher priority than it has. In this paper, first, potential based path planning method was introduced, next an efficient collision-avoidance algorithm for multiple mobile robots, moving in the obstacle environment, was proposed by using subgoals and obstacle priority. Finally, the developed algorithm was demonstrated graphically to show the usefulness of the algorithm.

  • PDF

System to Encourage Safe Driving of Personal Mobile Devices Based on Image Recognition and IoT (영상인식 및 IoT 기반 개인형 이동장치 안전 주행 장려 시스템 설계 및 개발)

  • Kim, Ji Soo;Kim, Mi Sung;Kim, Jae Hun;Yang, Jun Ho;Cho, Sang Eun;Nah, Jeong Eun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.11a
    • /
    • pp.860-862
    • /
    • 2022
  • 4차 산업 혁명 시대의 각 분야에서 딥러닝, IoT 기술이 접목되면서 최신 기술이 빠르게 발전을 하는 추세이다. 동시에 최근 몇 년간 전동 킥보드 사용자가 급증하면서 사고 수는 배로 늘어나 교통 분야에서는 전동 킥보드에 많은 관심이 쏠리고 있다. 본 연구는 이 두 가지 분야를 접목하여 안전한 전동 킥보드 이용 문화 확립을 통해 스마트 도시에 이바지하고자 한다. 이를 위해서는 사용자들을 단속하는 것이 아닌 자율적으로 올바른 교통 문화에 이바지할 수 있도록 유도하는 것이 효과적이며 이 점이 기존 시스템과의 주요한 차이점이다. 본 논문에서는 영상인식과 IoT를 통한 안전 주행 장려 시스템을 제안하고 이를 앱에서 구현한 모습을 소개한다. 이를 통해 안전한 도로교통 문화뿐만 아니라 친환경 교통수단 이용 장려로 인한 탄소 저감 효과까지 기대한다.