자율주행 자동차 또는 자율주행 로봇의 개발을 위해서는 경로 주행 시험이 필요하다. 이러한 시험은 실제 환경뿐만 아니라 시뮬레이션 환경에서도 수행되고 있다. 특히 강화학습과 딥러닝을 이용한 개발을 위해서 다양한 환경의 데이터가 필요한 경우에 시뮬레이터를 통한 개발도 이루어지고 있다. 이를 위해서는 수작업으로 설계된 경로뿐만 아니라 무작위로 자동으로 설계된 다양한 경로의 활용이 필요하다. 이러한 시험장 설계는 실제 건설, 제작에도 활용할 수 있다. 본 논문에서는 원호와 선분의 조합으로 이루어진 주행 시험 경로를 무작위로 생성하는 방법을 소개한다. 이는 원호와 선분의 거리를 구하여 충돌 여부를 판별하는 방법과 경로를 계속해서 이어 나가는 것이 불가능할 경우 경로 일부를 삭제하고 적절한 경로를 다시 만들어 나가는 알고리듬으로 이루어진다.
In this study, The behavior of an autonomous vehicle in an intersection accident situation is predicted. Based on a representative intersection accident situation from actual intersection accident database, simulation was performed by applying the automatic emergency braking algorithm used in the autonomous driving system. Accident reconstruction was performed based on the accident report of the representative accident situation. After applying the autonomous driving system to the accident-related vehicle, the tendency of intersection accidents that may occur in autonomous vehicles was identified and analyzed.
GNSS 수신기는 자율주행 자동차에 장착되어 항법 장치를 이루는 필수 요소이다. 하지만 의도적인 재밍 신호가 발생하였을 경우, GNSS 수신기 추정 위치 값의 성능 저하로 인해 사고 위험에 노출될 우려가 있다. 이를 방지하기 위한 연구가 필요하며, 그에 따라 재밍 발생 장치가 구비되어야 한다. 그러나 재밍에 관련한 법 조항에 따라 이를 불법으로 규정하고 있다. 본 논문에서는 법 조항을 준수하고, 주위 GNSS 센서에 영향을 주지 않는 차량 내 재밍 발생 장치를 구현한다. GNSS 알고리즘의 성능 평가를 위해 드라이빙 시뮬레이션을 활용하며, 간섭 환경에서 발생하는 자율주행 차량의 오작동 및 GNSS 센서에서 출력된 데이터 오차를 분석한다.
본 연구에서는 운전자 별로 생활 중에 이동하는 주행 도로의 특징 및 교통상황이 서로 다르며 운전습관이 상이함을 고려하여, 운전자 혹은 운전자 그룹별 기계학습모형을 구성하고, 학습된 모델을 분석하여 운전자의 주행모드 별 특징을 탐색하여 자율 주행 자동차를 시뮬레이션 하였다. 운전지식을 활용하여 주행조작 전후 센서의 동작 상황에 따라 8종류의 종방향 모드와 4종류 회전모드로 구분하고, 종방향 모드와 회전모드를 결합한 21개의 결합형 주행모드로 세분화 하였다. 주행모드가 레이블 된 시계열 데이터에 대해 딥러닝 지도학습 모델인 RNN (Recurrent Neural Network), LSTM (Long Short-Term Memory), Bi-LSTM 모델을 활용하여서 운전자 별 혹은 운전자 그룹별 주행데이터를 학습하고, 학습된 모델을 테스트 데이터 셋에서 주행 모드인식률을 검증하였다. 실험 데이터는 미국 VTTI 기관에서 수집된 22명의 운전자의 1,500개의 실생활 주행 데이터가 사용되었다. 주행 모드 인식에 있어, 데이터 셋에 대해 Bi-LSTM 모델이 RNN, LSTM 모델에 비해 향상된 성능을 보였으며, 최대 93.41%의 주행모드 인식률을 확인하였다.
In recent years, automated vehicles have garnered attention in the multidisciplinary research field, promising increased safety on the road and new opportunities for passengers. High-Definition (HD) maps have been in development for many years as they offer roadmaps with inch-perfect accuracy and high environmental fidelity, containing precise information about pedestrian crossings, traffic lights/signs, barriers, and more. Demonstrating autonomous driving requires verification of driving on actual roads, but this can be challenging, time-consuming, and costly. To overcome these obstacles, creating HD maps of real roads in a simulation and conducting virtual driving has become an alternative solution. However, existing HD maps using high-precision data are expensive and time-consuming to build, which limits their verification in various environments and on different roads. Thus, it is challenging to demonstrate autonomous driving on anything other than extremely limited roads and environments. In this paper, we propose a new and simple method for implementing HD maps that are more accessible for autonomous driving demonstrations. Our HD map combines the CARLA simulator and OpenStreetMap (OSM) data, which are both open-source, allowing for the creation of HD maps containing high-accuracy road information globally with minimal dependence. Our results show that our easily accessible HD map has an accuracy of 98.28% for longitudinal length on straight roads and 98.42% on curved roads. Moreover, the accuracy for the lateral direction for the road width represented 100% compared to the manual method reflected with the exact road data. The proposed method can contribute to the advancement of autonomous driving and enable its demonstration in diverse environments and on various roads.
최근 자동차는 관련 기술과 통신 환경의 발달로 차량과 도로 주변 인프라 구조와의 통신, 차량 간 통신이 가능해지고 있다. 자율주행차가 개발되면서 많은 센서와 고성능 연산장치가 탑재되고 있으며 이러한 자동차의 가용자원을 활용하여 클라우드 서비스를 제공하는 연구도 진행되고 있다. 본 논문에서는 연결형 자동차로 클라우드 서버를 구성하여 각 차량에 적합한 작업을 분배하는 과정에서 차량의 가용자원뿐만 아니라 기지국과의 통신 환경을 고려하여 동적으로 작업의 크기를 결정하는 기법을 제안하였다. 제안 기법의 모델을 기반으로 시뮬레이션한 결과 가용자원만을 고려하는 것보다는 통신 환경을 함께 고려해서 작업을 할당해야 마감 시간 내에 할당된 작업을 완료할 수 있다는 것을 확인하였다.
지능형 자동차는 주변 환경에 대한 인식을 바탕으로 동작을 계획하고 움직인다. 따라서 정확한 환경 인식은 자율 주행 자동차의 필수 요소로 여겨진다. 차량의 주행 환경은 차량이나 보행자 같은 동적인 장애물이 다수 존재하여, 안전한 동작을 위해 이런 동적 장애물에 대한 인식이 정확하게 이루어져야 한다. 이를 위해 센서의 불확실성을 극복하는 일이 필수적이다. 본 논문에서는 레이더 센서를 이용하여 다수의 차량을 인식하고 추적하는 알고리즘을 제안한다. 제안된 추적 시스템은 몇 가지 특징을 갖는다. 레이더 센서가 차량을 계측할 때, 그 데이터가 양 모서리에서 주로 나타나는 특징을 혼합 밀도 네트워크로 표현하고, 이렇게 표현된 레이더 데이터의 확률적인 분포를 파티클 필터의 가중치 계산에 적용하여 추적 알고리즘을 수행하였다. 또한, 파티클 필터가 갖는 차원의 저주를 극복하고 시간의 흐름에 따라 그 숫자가 변화하는 다수 대상체의 상태를 예측하기 위해 가역 점프 마르코프 체인 몬테 카를로 (RJMCMC)를 통한 샘플링을 적용하였다. 제안된 알고리즘은 시뮬레이션을 통해 검증되었다.
Deep Drive 플랫폼 개발 기술인 HILS(Hardware In the Loop Simulation)는 시스템 모델에 근간을 둔 실시간 시뮬레이션 기법과 H/W를 접목시킨 실시간 해석 기법으로, 플랫폼 개발으로 현재는 난해성이 있는 자율 주행 자동차 실차의 테스트 베드를 구현하여, 여러 가지 실험을 통해 실제 차의 운행에 대한 피드백을 제공, 운전자로부터 안전을 보장하기 위한 기술 보장, 기술의 상용화, 양산화 연구에 도움을 줄수 있음.
교통은 점차 V2X와 자율주행자동차의 시대로 변화하고 있다. 교통상황에 대한 정확한 판단은 경로선택 또는 자율주행에 있어 중요한 지표이다. 정확한 교통상황을 파악하기 위한 방법으로 택시와 같은 프로브 차량을 이용하는 방법이 많이 사용되고 있다. 이러한 방법은 프로브 차량의 특성에 따라 데이터가 편향될 수 있으며, 막대한 비용이 발생하는 문제점이 있다. V2X 차량은 이러한 문제점을 해결할 수 있으며, 무엇보다 실시간으로 교통정보를 수집하고, 배포가 가능할 것으로 판단된다. 모든 차량이 V2X 차량일 경우, 이러한 문제는 간단하게 해결될 것으로 기대된다. 하지만 일부만 V2X차량일 때는 대표성의 문제가 검토되어야 한다. 이를 위하여 가상의 네트워크와 교통류를 생성하였으며, SUMO 시뮬레이션을 통해 다양한 시나리오분석을 수행하였다. 교통량 수준에 따라 V2X 차량군과 Non-V2X 차량군 사이의 통행시간에 대한 통계적 검증을 수행하였다. 3~5% 이상으로 구성된 교통류 또는 110대/시이상으로 V2X 차량이 구성된 교통류에서는 V2X 차량의 통행정보가 대표성을 띌 수 있다는 것을 확인하였다. 향후 다양한 네트워크 및 실제 상황에 대하여 적용하고자 한다.
자율 주행 자동차 개발에 있어서 라이다 센서의 중요성이 커지고 있다. 센서 선정이나 알고리즘 개발을 위해 고가의 라이다 센서를 차량에 탑재하여 다양한 주행 환경에 대해 시험하기에 어려움이 따른다. 이에 본 연구는 다양한 차량용 라이다 센서에 대한 일반화된 기하모델링을 통해 범용적으로 적용될 수 있는 차량용 라이다 시뮬레이터를 개발하였다. 개발된 시뮬레이터를 활용하여 많이 활용되고 있는 특정 센서에 대하여 데이터 시뮬레이션과 품질 검증을 수행하였다. 또한, 생성된 데이터를 장애물 탐지에 적용함으로써 선정된 센서의 활용 가능성을 평가하였다. 이처럼 개발된 시뮬레이터는 센서의 도입 및 운용에 앞서서 다양한 실험을 가능하게 하고, 하드웨어 구축과 병행하여 알고리즘 개발을 도모할 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.