• Title/Summary/Keyword: 자유진동해석

Search Result 574, Processing Time 0.024 seconds

6자유도 진동대 - 특성 및 활용방안

  • 이호섭
    • Journal of KSNVE
    • /
    • v.1 no.1
    • /
    • pp.7-19
    • /
    • 1991
  • 해사기술연구소가 보유하고 있는 6자유도 대형진동대의 시스템 구성과 시험파형 합성기법 및 시험방법에 대하여 간략히 살펴보았다. 통상적인 가진기가 1방향의 운동만을 구현할 수 있음에 비해, 6자유도 진동대는 3축병진, 3축 회전의 임의의 복잡운동을 구현할 수 있는 국내 유일의 설비이며 용량 또한 30톤의 시험체까지를 대상으로 한 대형 진동대로서 각종 분야에 필요한 진동시험 업무를 지원할 수 있다. 구조물의 방진 및 내진설계를 위해서는 가능한한 실물 또는 모형의 실증실험이 필수적이며, 이는 내진 해석기법의 개발 및 검증의 기초가 된다. 특히 이 시스템은 내진 검증시험에 필요한 모든 기능을 갖추고 있으므로, 앞으로 건설될 국내원자력 발전소에 이용되는 각종기기의 내진검증시험을 통하여 이들 기기의 국산화에 크게 이바지할 것으로 보인다.

  • PDF

Flexural-Torsional Free Vibrations of Circular Strip Foundation with Variable Breadth on Pasternak Soil (Pasternak지반으로 지지된 변화폭 원호형 띠기초의 휨-비틀림 자유진동)

  • Lee, Byoung Koo;Park, Kwang Kyou;Kang, Hee Jong;Yoon, Hee Min
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.5
    • /
    • pp.539-548
    • /
    • 2007
  • This paper deals with flexural-torsional free vibrations of the circular strip foundation with the variable breadth on Pasternak soil. The cross-section of the strip foundation is chosen as the rectangular one with the constant thickness and variable breadth, which is symmetrical about the mid-arc. Also, the foundation that supports the circular strip is modeled as the Pasternak soil with the shear layer. Ordinary differential equations accompanying the boundary conditions are derived. In the governing equations, the transverse, rotatory and torsional inertias are included. These equations are solved numerically and four lowest frequencies are obtained. In the numerical results, the effects of foundation parameters on frequencies are extensively investigated. It is expected that the theories and numerical results of this study can be used in the dynamic design of strip foundations.

고속 터보 로터 시스템의 자유진동 특성 분석

  • 전원석;최문창;유계형;권대규;이성철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.185-185
    • /
    • 2004
  • 최근 고속 회전기계에 사용되고 있는 공기호일 베어링은 동압형 기체 베어링으로 매우 안정적이고, 보통의 저널 베어링에서 발생할 수 있는 불안정한 진동을 최소화 할 수 있는 장점을 가지고 있다. 또한 높은 안정성 및 축 자체에 자동 조절 기능을 가지고 있어서 극저온 기계 및 고속 회전기계에 널리 사용되고 있다. 이러한 고속 회전기계는 축의 기동 및 정지 시, 위험속도를 안전하게 통과하기 위해 위험속도에서의 진동을 억제하여야 하고, 운전 가능한 회전수를 증가시키기 위해서 로터 시스템의 동적 해석이 필요하다.(중략)

  • PDF

Parametric Studies of Flexural Free Vibrations of Circular Strip Foundations with Various End Constraints Resting on Pasternak Soil (경계조건 변화에 따른 Pasternak 지반으로 지지된 원호형 띠기초의 휨 자유진동에 관한 변수연구)

  • Lee, Byoung-Koo;Li, Guang-Fan;Kang, Hee-Jong;Yoon, Hee-Min
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.9
    • /
    • pp.835-846
    • /
    • 2007
  • This paper deals with the flexural free vibrations of circular strip foundation with the variable breadth on Pasternak soil. The breadth of strip varies with the linear functional fashion, which is symmetric about the mid-arc. Differential equations governing flexural free vibrations of such strip foundation are derived, in which the elastic soil with the shear layer, i.e. Pasternak soil, is considered. Effects of the rotatory and shear deformation are included in the governing equations. Differential equations are numerically solved to calculate the natural frequencies and mode shapes. In the numerical examples, the hinged-hinged, hinged-clamped and clamped-clamped end constraints are considered. Four lowest frequency parameters accompanied with their corresponding mode shapes are reported and parametric studies between frequency parameters and various system parameters are investigated.

Free Vibration Analysis of Plane Structures with Isogeometric Concept (등기하개념을 이용한 평면구조물의 자유진동해석)

  • Lee, Sang-Jin
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.9
    • /
    • pp.171-182
    • /
    • 2019
  • Isogeometric concept is introduced to carry out free vibration analysis of plane structures. The geometry of structures is represented by using non-uniform rational B-spline surface (NURBS) and its basis function is consistently used in the formulation of plane stress element. In addition, multi-patch strategy is introduced to deal with the openings in building. The performance of the present isogeometric plane stress element is investigated by using five numerical examples. From numerical results, it is found to be that the isogeometric concept can successfully identify reliable natural frequencies and associated mode shapes of plane structures with/without openings in efficient way.

Free Vibration of Composite Cylindrical Shells with a Longitudinal, Interior Rectangular Plate (내부에 사각판이 결합된 복합재료 원통쉘의 자유진동)

  • 이영신;최명환
    • Composites Research
    • /
    • v.12 no.5
    • /
    • pp.65-79
    • /
    • 1999
  • This paper descrives the method to analyzed the free vibratioin of supported composite cylindrical shells with a longitudinal, interior rectangular plate. To obtain the free vibration characteristics before the combination of two structures, the energy principle based on the classical plate theory and Love's thin shell theory is adopted. The frequency equation of the combined system is formulated using the receptance method. When the line load and moment applied along the joint are assumed as the the Dirac delta and sinusolidal function, the continuity conditions at the joint of the plate and shell are proven to be satisfied. The effects on the combined shell frequencies of the length-no-radius ratios and radius-to-thickness ratios of the shell, fiber orientation angles and orthotropic modulus ratios of the composite are also examined.

  • PDF

Free Vibration Analysis of Compressive Tapered Members Resting on Elastic Foundation Using Differential Quadrature Method (미분구적법(DQM)을 이용한 탄성지반 위에 놓인 변단면 압축부재의 자유진동 해석)

  • 이병구;최규문;이태은;김무영
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.4
    • /
    • pp.629-638
    • /
    • 2002
  • This paper deals with the free vibration analysis of compressive tapered members resting on elastic foundation using the Differential Quadrature Method. Based on the differential equation subjected to the boundary conditions, adopted from the open literature, which governs the free vibrations of such member, this equation is applied to the Differential Quadrature Method. For computing natural frequencies, the numerical procedures are developed by QR Algorithm, in which the Chebyshev-Gauss-Lobatto method is used for choosing the grid points. The numerical methods developed herein for computing natural frequencies are programmed in FORTRAN code, and all solutions obtained in this study are quite agreed with those in the open literature.

Free Vibration of Stepped Horizontally Curved Members Supported by Two-Parameter Elastic Foundation (두 변수 탄성지반으로 지지된 불연속 변단면 수평 곡선부재의 자유진동)

  • Lee, Byoung Koo;Lee, Tae Eun;Ahn, Dae Soon;Kim, Mu Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.6
    • /
    • pp.651-659
    • /
    • 2001
  • The main purpose of this paper is to present an analytical method for free vibration of stepped horizontally curved members on two-parameter elastic foundation. The ordinary differential equations governing the free vibration of such beams are derived as non-dimensional forms including the effects of rotatory inertia and shear deformation. The governing equations are solved numerically for the circular, parabolic, sinusoidal and elliptic curved beams with hinged-hinged, hinged-clamped and clamped-clamped end constraints. As the numerical results, the lowest four natural frequency parameters are presented as the functions of various non-dimensional system parameters. Also the typical mode shapes are presented.

  • PDF

A Study on the Dynamic Behavior of a Various Buried Pipeline (각종 매설관의 동적거동에 관한 연구)

  • Jeong, Jin-Ho;Lim, Chang-Kyu;Joeng, Du-Hwoe;Kook, Seung-Kyu
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.4 s.50
    • /
    • pp.15-24
    • /
    • 2006
  • This work reports the results of our study on the dynamic response of various buried pipelines depending on their boundary conditions. We have studied behavior of the buried pipelines both along the axial and the transverse direction. The buried pipelines are modeled as beams on elastic foundation while the seismic wave as a ground displacement in the form of a sinusoidal wave. The natural frequency, its mode, and the effect of parameters have been interpreted in terms of free vibration. In order to investigate the response on the ground wave, the resulting frequency and the mode shape obtained from the free vibration have been utilized to derive the mathematical formula for the forced vibration. The natural frequency varies most significantly by the soil stiffness and the length of the buried pipelines in the case of free vibration. The effects of the propagation direction and velocity and the frequency of ground wave on the dynamic responses of concrete, steel, and FRP pipes have been analyzed and then dynamic responses depending on the type of pipes have been compared. Through performing dynamic analyser for various boundary conditions and estimation of the location of maximum strain has been estimated for the type of pipes and boundary conditions.

Free and Ambient Vibration of Steel-Deck Truss Bridge (강합성 데크 트러스 보도교의 자유진동해석 및 상시진동실험에 관한 연구)

  • Jung, Sung Yeop;Oh, Soon Taek
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.4
    • /
    • pp.60-68
    • /
    • 2012
  • This study describes an analytical and experimental investigation of the pedestrian steel-deck truss bridge in the City of Rochester, New York, U.S.A. This investigation was undertaken to provide assurance that this important bridge continues to be functional for this use. An ambient vibration experiment on full-scale structures is a way of assessing the reliability of the various assumptions employed in the mathematical models used in analysis. It is also the most reliable way of determining the structural parameters of major importance in structural dynamics, such as the mode shapes and the associated natural frequencies. Pedestrian-induced vibrations have been measured on the bridge to determine the displacement and the vertical and transverse dynamic characteristics of the steel deck truss. In the analytical modeling, three-dimensional finite element analysis was developed and validated against the ambient tests.