본 논문에서는 2D 자연영상을 MPEG-4의 메쉬 구조로 압축/저장하기 위한 메쉬 구성(meshgeneration)의 전처리에 사용될 수 있도록, 특징점들을 블록기반의 웨터쉐드 영역분할과 다각형 근사화를 통해 추출하는 방법을 제안한다. 우선 2D 자연영상을 8$\times$8 또는 4$\times$4 블록 패턴분류를 이용한 웨터쉐드 분할을 이용하여 영역별로 분리해 낸다 이렇게 분할된 영역의 구분선을 이루는 화소들은 영상의 특징을 나타내며, 이들은 폐곡선을 이루게 된다. 이들 폐곡선 위의 연속적인 화소들을 다각형 근사화와 중복 정점을 제거하는 후처리를 이용해 특징점으로 얻어낸다.
본 연구는 특징점 기반 변위 계측 알고리즘에서 환경 변화 및 타겟의 종류에 따라 특징점 검출 성능을 비교 분석하였고, 특징점 검출 알고리즘에 따른 변위 측정정확도를 비교 분석하기 위해 진행되었다. 성능 평가를 위해 3층 전단 구조물을 설계하였으며, FHD(1920×1080)급 카메라를 활용하여 구조물의 변위 응답을 기록하였다. 촬영거리 증가와 조도 변화에 따른 성능분석을 위해 최초 촬영거리를 10m로 설정하여 10m씩 멀어지면서 최대 40m까지 실험을 수행하였으며, 두 가지 조도 환경(450lux와 120lux)을 조성하였다. 구조물에 설치된 인공 타겟과 자연 타겟(볼트연결부 및 슬래브 단면적)을 관심영역으로 설정하여 Shi-Tomasi corner, SURF, BRISK 및 KAZE 특징점 검출 알고리즘으로 특징점을 검출하였다. 특징점 검출 성능분석 결과 Shi-Tomasi corner와 KAZE 알고리즘이 타겟 종류, 조도변화 및 촬영거리 증가에 강건한 것으로 보여줬으며, 두 알고리즘을 활용한 변위 측정정확도도 가장 높은 것으로 나타났다. 하지만 자연 타겟 활용시 변위 측정정확도는 인공 타겟의 경우보다 낮아지는 것을 보여주며, 밝기 대비가 가장 낮은 슬래브 단면적을 타겟으로 활용시 비전센서 운용거리가 20m로 적용 한계성을 보여줬다. 이는 촬영거리 증가에 따라 자연 타겟의 해상도가 저하되어 특징점을 추출에 한계성을 나타냈다.
본 논문은 사용자 사진에서 ASM(Active Shape Model)을 이용하여 얼굴의 각 특징 점을 추출하고, 추출 된 특징점을 이용하여 화장할 부분의 영역을 생성 한다. 기존의 가상 메이크업 프로그램에서는 사용자가 수동적으로 몇 개의 특징 점을 정확히 선택해야 하는데서 불편함을 초래했다. 본 논문에서 제안하는 가상 메이크업 프로그램에서는 ASM을 이용하여 사용자의 입력을 필요로 하지 않는다. 자연스러운 화장 효과를 표현하기 위해서 기본적인 알파 블렌딩을 각각 화장품의 특징에 맞게 변형하여 사용자 피부색과 화장품의 색을 혼합한다. 얼굴 윤곽, 눈, 눈썹, 입술, 볼의 영역을 생성하고, Foundation, Blush, Lip Stick, Lip Liner, Eye Pencil, Eye Liner, Eye Shadow 종류의 화장을 할 수 있게 구현하였다.
본 논문에서는 자연스러운 파노라마 영상 생성을 위해 FAST(features from accelerated segment test)를 이용한 특징점 기반의 파노라마 영상 생성 기법을 제안한다. 다수의 영상을 이용해 자연스러운 파노라마 영상을 만들기 위해 실린더 투영을 수행 한 후 추출된 특징점들을 RANSAC(random sample consensus)을 이용해 정합 시 오차율을 최소화한다. 서로 다른 방향에서 얻은 다수의 영상을 합성할 때 정합 경계 주변의 이질감을 보완하기 위해 블렌딩 기법을 사용함으로써 자연스러운 파노라마 영상을 생성한다. 다수의 영상으로 실험을 한 결과 왜곡이 보정되고 자연스러운 파노라마 영상을 생성할 수 있었다.
최근 고성능 디지털 카메라의 발전으로 영상을 쉽게 획득하고, 많은 곳에서 활용하고 있다. 그 중에서 영상을 정합하여 사용하는 이미지 스티칭 방법에 대한 많은 연구가 진행되고 있다. 이미지 스티칭은 위성이나 정찰기 등의 군사용 목적 및 의료 영상, 지도 등의 컴퓨터 비전 분야 등에서 활용할 수 있다. 본 논문에서는 영상에서 특징점을 추출하고 이를 정합하는 과정에서 의미 있는 특징점을 분류하고 이를 사용하는 향상된 SURF 알고리즘 기반의 고속 이미지 스티칭 방법을 제안한다. 여러 장의 영상에서 정합되는 부분을 찾기 위해 각각의 영상에서 특징점을 추출한다. 각각의 영상에서 추출된 특징점들 중 잡음 등과 같은 오류를 제거하여 의미 있는 특징점을 분류하고 이를 정합하여 연산 처리량을 줄임으로써 이미지 스티칭의 속도를 향상시켰다. 실험 결과 특징점 정합 속도 및 이미지 스티칭 속도가 기존의 알고리즘 보다 빠르면서도 자연스러운 영상을 생성할 수 있었다.
시선 위치 추적이란 사용자가 모니터 상의 어느 지점을 쳐다보고 있는 지를 파악해 내는 기술이다. 시선 위치를 파악하기 위해 본 논문에서는 2차원 카메라 영상으로부터 얼굴 영역 및 얼굴 특징점을 추출한다. 초기에 모니터상의 3 지점을 쳐다볼 때 얼굴 특징점들은 움직임의 변화를 나타내며, 이로부터 카메라 보정 및 매개변수 추정 방법을 이용하여 얼굴특징점의 3차원 위치를 추정한다. 이후 사용자가 모니터 상의 또 다른 지점을 쳐다볼 때 얼굴 특징점의 변화된 3차원 위치는 3차원 움직임 추정방법 및 아핀변환을 이용하여 구해낸다. 이로부터 변화된 얼굴 특징점 및 이러한 얼굴 특징점으로 구성된 얼굴평면이 구해지며, 이러한 평면의 법선으로부터 모니터 상의 시선위치를 구할 수 있다. 실험 결과 19인치 모니터를 사용하여 모니터와 사용자까지의 거리를 50∼70cm정도 유지하였을 때 약 2.08인치의 시선위치에러 성능을 얻었다. 이 결과는 Rikert의 논문에서 나타낸 시선위치추적 성능(5.08cm 에러)과 비슷한 결과를 나타낸다. 그러나 Rikert의 방법은 모니터와 사용자 얼굴까지의 거리는 항상 고정시켜야 한다는 단점이 있으며, 얼굴의 자연스러운 움직임(회전 및 이동)이 발생하는 경우 시선위치추적 에러가 증가되는 문제점이 있다. 동시에 그들의 방법은 사용자 얼굴의 뒤 배경에 복잡한 물체가 없는 것으로 제한조건을 두고 있으며 처리 시간이 상당히 오래 걸리는 문제점이 있다. 그러나 본 논문에서 제안하는 시선 위치 추적 방법은 배경이 복잡한 사무실 환경에서도 사용가능하며, 약 3초 이내의 처리 시간(200MHz Pentium PC)이 소요됨을 알 수 있었다.
본 논문은 의학 연구 및 교육, 환자 치료를 위해 보다 정확한 정보를 제공하고자 의료 영상 중에 가장 많이 사용하는 의료 영상인 뇌 MR 영상의 횡단면만을 가지고 3차원으로 가시화한다. 3차원으로 재구성하는데 있어서 원 영상의 모형을 자연스러운 표현을 위해서는 층 영상과 층 영상간의 보간 영상이 필요하므로 이를 생성하는 방법에 대해서 제안한다. 그리고 3차원 재구성에 필요한 정보를 추출하기 위해 각 영상에서 머리와 뇌 영역의 윤곽선 정보를 추출하고 가시화의 시간을 줄이기 위해 윤곽선 정보에서 특징점을 추출하여 이를 기반으로 하여 3차원으로 재구성 한다.
본 연구에서는 사용자가 즉석에서 연주한 곡에 대응하는 춤 동작을 자동으로 생성하는 기술을 제안한다. 본 기법은 먼저 댄서로부터 모션 캡쳐 받은 춤 시퀀스를 분절화한 후 사용자가 신디사이저를 통해 직접 연주하여 얻은 MIDI 데이터를 분석해 음악에서의 특징점을 추출한다. 그리고 분절화 한 모션의 세그먼트들을 음악에 맞춰 다시 배열하여 새로운 춤 시퀀스를 생성함으로써 사용자가 연주한 음악과 어울리는 춤 동작을 자동으로 생성한다. 이를 위해 세 단계의 작업을 수행하게 되는데, 첫 번째 단계에서 모션 캡쳐를 통해 얻게 된 데이터에서 캐릭터의 위치와 자세를 기준으로 하여 긴 시퀀스를 의미 있는 작은 춤 동작으로 분절화한다. 두 번째 단계에서는 사용자의 연주를 통해 획득한 MIDI를 분석하여 특징점을 추출하고, 마지막 단계에서는 이를 바탕으로 음악에 기반한 음악과 동작을 합성한다. 본 연구는 음악과 댄스의 리듬감이 파괴되지 않도록 합성함으로써 우리의 연구는 기존 연구에 비해서 훨씬 자연스러운 춤 시퀀스를 결과물로 만들어 낸다.
최근 모바일 산업이 발달하고 성능이 향상되어 생활 속에서 모바일 기기의 사용량이 늘고 있다. 현재 모바일 기기에는 고성능 카메라를 장착하고 있어 데스크톱에서 수행하던 영상 정합을 모바일 기기에서 수행할 수 있다. 그러나 모바일 기기는 제한된 하드웨어 자원을 가지고 있어 영상 정합을 수행하기에 연산량이 많다. 따라서 본 논문에서는 모바일 환경에서 효율적인 영상 정합을 위한 향상된 특징점 기술자 추출 및 정합 기법 제안한다. 특징점 기술자 생성시 방향 윈도우 확장 및 기술자의 차원을 줄여 정확도를 높이면서 연산량을 감소시킨다. 또한 정합점 분류 기법을 통하여 영상 정합의 연산량을 감소시킨다. 실험결과 기존의 방법보다 영상 정합 속도가 향상되어 모바일 환경에 적합하면서도 자연스러운 영상을 생성할 수 있었다.
이동 로봇의 위치인식 기술을 위하여 SLAM(Simultaneous Localization and Mapping)에 관한 많은 연구가 진행되고 있다. 본 논문에서는 시야각이 넓은 어안렌즈를 장착한 단일 카메라를 사용하여 천장의 특징점을 이용한 자기위치 인식에 관한 방안을 제시한다. 여기서는 어안렌즈 기반의 비전 시스템이 가지는 왜곡 영상의 보정, SIFT(Scale Invariant Feature Transform) 기반의 강인한 특징점을 추출하여 이전 영상과 이동한 영상과의 정합을 통해 최적화된 영역 함수를 도출하는 과정, 그리고 기하학적 적합모델 설계 등을 제시한다. 제안한 방법을 실험실 환경 및 복도 환경에 적용하여 그 유용성을 확인한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.