• Title/Summary/Keyword: 자동 열차 제어

Search Result 52, Processing Time 0.038 seconds

한국형 고속전철의 안전운행을 위한 자동열차제어장치

  • 조용기
    • 전기의세계
    • /
    • v.53 no.6
    • /
    • pp.49-54
    • /
    • 2004
  • 현재의 철도, 도로망 등의 각 중심측 및 간선측의 주요 교통시설은 이미 포화 상태가 되어 물류비용의 증가를 초래하고, 배기 가스를 비롯한 환경오염 문제를 유발하고 있기 때문에 이에 대한 해결방안이 시급한 실정이다. 이러한 상황에서 고속전철은 대기 오염을 일으키지 않으면서 신속$.$대량 수송이 가능하여 교통량을 대량으로 흡수할 수 있는 주요 교통 수단으로 인식되고 있다.(중략)

  • PDF

A Study for Applied In the Transfer of Train Information using RTD System (열차종합제어장치 정보전송시 RTD시스템을 적용한 사례 연구)

  • Shin, Han-Chul;Kim, Jung-Hyun;Kim, Sang-Hoon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2011.01a
    • /
    • pp.109-110
    • /
    • 2011
  • Because contemporary rolling stock system is complex and highly advanced, and it builds mutual interface, it is necessary to manage maintenance of rolling stock systematically. This study present a case, which shows how to adopt and apply RTD(Remote Transmission Device) integrated to train information collection device. After the train service is complete and the train enters the main subway station, various kinds of information collected from TCMS(Train Control Monitoring System) is transmitted to train depot information collection device through RTD. This study suggests that RTD integrated to train information collection device helps build an effective rolling stock maintenance system by improving reliability of data transmission and cutting maintenance costs.

  • PDF

Modeling of the Optimal Operation Pattern for Energy Saving of The Trains (전동열차의 운행에너지 절감을 위한 최적 운행 패턴 모델링)

  • Kim, Jung-Hyun;Lee, Se-Hoon;Jun, Sang-Pyo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.12
    • /
    • pp.187-196
    • /
    • 2014
  • In this paper, Minimize driving energy for operation within a defined distance yeokgan fixed time-resolved and determine the nature of the train is traveling, and to model mathematically. Urban rail car cruise in general by the PID controller is used instead of automatically tracking a target value while traveling in energy consumption to be minimized by using optimal control model railroad charyangreul was designed under real operating conditions the same. The actual track conditions apply to the minimum value or a separate listing of cars around the track facility without a driving energy of the automatic operation and to reduce the driving energy. Therefore, actual route chosen straight line 8 / gradient segment / curve for the measured data analysis, such as sections within the city-minute drive each section and presented how the trains to save energy, depending on the pattern of the train station in the region.

The Design of Integrated Data Acquisition Board(IDAB) to Achieve Automatic Control of Korea High Speed Railway(HSR 350X) (G7 한국형 고속전철 자동제어를 위한 통합형 데이터 취득 장치의 설계방안)

  • Cho, Pil-Sung;Kim, Jung-Han;Park, Dong-Ho;Kim, Chan-Ho;Choe, Hang-Soeb
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.3081-3083
    • /
    • 2005
  • 한국형 고속전철차량의 자동제어 구현을 위해서 우선 다양한 종류의 장치들로부터 상태정보(Line Voltage-열차가선전압, Bogie Hunting, Preset Speed, PWM, Train Velocity, Brake Pressure, Reservoir Pressure)를 취득해야하며, Main Process Unit(MPU)에서의 고속 Data 처리를 위해서 취득한 Analog Data를 신속하게 Digital Data로 변환해야 한다. 또한 열차내의 특수한 조건(Noise, Vibration)에서도 안정적인 데이터의 취득을 만족시켜야한다. 이와 같은 상황을 고려한 독자적이 통합형 데이터 취득 장치 -Integrated Data Acquisition Board(IDAB)-의 설계방안을 제시하였다.

  • PDF

Design of Train Control Software Safety Evaluation Tool (열차제어 소프트웨어 안전성 평가도구의 설계)

  • Hwang, Jong-Gyu;Jo, Hyun-Jeong;Kim, Hyung-Shin
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.2
    • /
    • pp.139-144
    • /
    • 2008
  • Recent advances in embedded system technology have brought more dependence on automating train control. While much efforts have been reported to improve electronic hardware's safety, not so much systematic approaches to evaluate software's safety, especially for the vital software running on board train controllers. In this paper, we propose a new software tool to evaluate software safety for the train controller. We have reviewed requirements in the international standards and surveyed available tools in the market. From that, we identified necessary tests to meet the standards and proposed a tool that can be used during the whole software life cycle. We show the functional architecture and internal components of the tool. Our tool is unique in that it is a comprehensive tool specifically designed for software safety evaluation while other tools are not.

A Study on Reliability Prediction for Korea High Speed Train Control System (한국형고속철도 열차제어시스템 하부구성요소 신뢰도예측에 관한 연구)

  • Shin Duc-Ko;Lee Jae-Ho;Lee Kang-Mi;Kim Young-Kyu
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.4 s.35
    • /
    • pp.419-424
    • /
    • 2006
  • In this paper we study on a method to predict and to demonstrate the reliability of the Korea high speed train control system in quantitative point of view. For the prediction of the reliability in train control system which is composed of electronic parts, Relax Software 7.7 automation tool is employed and MIL-HDBK-217 Handbook that is a standard for the prediction of the failure rate in electronic components is used. Mean Time Between Failure (MTBF) is predicted based on the failure rate of the subsystems, State Modeling and Markov Modeling method is used to express a reliability function of the train control system composed by hardware redundancy as a function of time. We propose a Reliability Test which is performed on the level of the subsystems and Failure Report, Analysing, Correction action system which use the test operation data to prove the predicted reliability.

Automatic train control system of Light rail transit for Rubber Tire (고무차륜 경량전철용 자동운전 시스템의 제어방법)

  • 이은규;최재호
    • Journal of the Korean Society for Railway
    • /
    • v.6 no.1
    • /
    • pp.49-57
    • /
    • 2003
  • This paper proposes the Train Control System for the LRT(light rail transit). With regard to information processing in car, we build a computer network in the car, turned the hardware required for train control into software, and developed the Train Control Monitoring System(TCMS) and ATC. Drive Type of Train control system car can drive with Driverless mode basically, and this paper applied 10Mbps special communication type for car control, data analysis, The propulsion efforts and breaking effort can control the cars. It is used Vector Control in Propulsion control and proposed Operating pattern for Propulsion control thinking Operating data of Rubber Tire LRT.

Study on a New Method for Precise Stop Control of Metro Trains: In Case of Large Speed Error (도시철도 열차 정위치 정차제어의 새로운 방안에 대한 연구: 속도 오차가 큰 경우)

  • Kim, Jungtai
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.591-598
    • /
    • 2021
  • One of the requirements of metro trains is to stop with precision to ensure that the train can stop precisely at the designated location on the platform. If this is not satisfied, interference with the screen door occurs, causing inconvenience to passengers and delays in operation. In the case of an automatic operated train, the current position is determined by the current speed information of the train, and control is performed by issuing an acceleration/deceleration command. Therefore, accurate control becomes impossible if the error of the speed information is large. In metro railroads, a Precision Stop Marker (PSM) is used to correct the position error, so that the error of stop control can be reduced by correcting the position error at a specific point. On the other hand, because the PSM itself has only position information, it does not compensate for the speed error. This paper proposes a method for performing in-place stop control by estimating the speed with the PSM progress information. The speed can be estimated when the train is operated at a constant deceleration speed, and the target deceleration can be obtained to perform stop control. The feasibility and excellence of the proposed method are shown through a numerical simulation.

Design and Implementation of Mathematical Model based Hierarchical Conflict Detection and Resolution (수리모형 기반의 계층적 열차경합관리 설계 및 구현)

  • Kim, Kyung-Min;Hong, Soon-Heum
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.687-694
    • /
    • 2008
  • Given the daily tactical schedule, the purpose of the traffic management system is to develop operating plan that will achieve the stated schedule as best as possible. The operating plan has to be modified during the day because of occurring disturbance(e.g. delay, infrastructure breakdown, etc.) Conflict detection and resolution(CDRS) are aimed for adjusting the distorted schedule to tactical schedule. Our research separate CDRS into two hierarchy modules, line conflict control module and station conflict control module. We define the role of each modules and design the cooperative architecture. We suggest the conflict detection and resolution approach based on mathematical model. These results can be implemented as prototype modules.

  • PDF