• 제목/요약/키워드: 자동화 기계학습

검색결과 105건 처리시간 0.024초

Azure 클라우드 플랫폼의 가상서버 호스팅을 이용한 데이터 수집환경 및 분석에 관한 연구 (A study on data collection environment and analysis using virtual server hosting of Azure cloud platform)

  • 이재규;조인표;이상엽
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2020년도 제62차 하계학술대회논문집 28권2호
    • /
    • pp.329-330
    • /
    • 2020
  • 본 논문에서는 Azure 클라우드 플랫폼의 가상서버 호스팅을 이용해 데이터 수집 환경을 구축하고, Azure에서 제공하는 자동화된 기계학습(Automated Machine Learning, AutoML)을 기반으로 데이터 분석 방법에 관한 연구를 수행했다. 가상 서버 호스팅 환경에 LAMP(Linux, Apache, MySQL, PHP)를 설치하여 데이터 수집환경을 구축했으며, 수집된 데이터를 Azure AutoML에 적용하여 자동화된 기계학습을 수행했다. Azure AutoML은 소모적이고 반복적인 기계학습 모델 개발을 자동화하는 프로세스로써 기계학습 솔루션 구현하는데 시간과 자원(Resource)를 절약할 수 있다. 특히, AutoML은 수집된 데이터를 분류와 회귀 및 예측하는데 있어서 학습점수(Training Score)를 기반으로 보유한 데이터에 가장 적합한 기계학습 모델의 순위를 제공한다. 이는 데이터 분석에 필요한 기계학습 모델을 개발하는데 있어서 개발 초기 단계부터 코드를 설계하지 않아도 되며, 전체 기계학습 시스템을 개발 및 구현하기 전에 모델의 구성과 시스템을 설계해볼 수 있기 때문에 매우 효율적으로 활용될 수 있다. 본 논문에서는 NPU(Neural Processing Unit) 학습에 필요한 데이터 수집 환경에 관한 연구를 수행했으며, Azure AutoML을 기반으로 데이터 분류와 회귀 등 가장 효율적인 알고리즘 선정에 관한 연구를 수행했다.

  • PDF

강화학습을 이용한 게임 테스트 자동화 (Game Test Automation with Reinforce Learning)

  • 이석기;곽호영
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2018년도 제57차 동계학술대회논문집 26권1호
    • /
    • pp.25-28
    • /
    • 2018
  • 본 논문에서는 강화학습을 통한 게임 테스트 자동화를 제안한다. 게임 테스트의 일부가 게임을 플레이라는 것과 강화학습에 기반을 둔 인공 신경망 모델들이 게임플레이에 많은 성과를 거둔 것에 착안하여 테스트 케이스 자동 생셩 및 기계학습을 통한 테스트 자동화를 연구하였다. 테스트 관리자를 두어 게임 요소에 필수적인 테스트 케이스를 데이터 조합으로 생성하고, 테스트 케이스를 수행할 인공지능을 기계학습으로 작성하여 자동화 유지비용을 절감한다. 이 모델을 소형 게임에 시험적으로 적용하였고, 정상 작동을 확인하였다.

  • PDF

명세 기반 인공지능 학습 데이터 수집 방법 (A Specification-Based Methodology for Data Collection in Artificial Intelligence System)

  • 김동기;최병기;이재호
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제11권11호
    • /
    • pp.479-488
    • /
    • 2022
  • 최근 기계학습 기술이 빠르게 발전함에 따라 지능형 시스템을 구성하는 여러 기술 중에서 인지, 추론 및 판단, 행위와 같은 분야에서 기계학습을 활용한 연구가 활발히 이루어지고 있다. 이러한 기계학습을 활용하기 위해서는 학습을 위한 데이터의 구축이 필수적이다. 하지만 데이터가 생성되는 환경에 따라 생성되는 데이터의 종류가 다양하고, 기계학습에 활용할 학습모델에 따라 요구되는 데이터의 종류와 양식이 다르다. 이로 인해 새로운 환경에서 기존의 데이터 수집 방법을 재사용하지 못하고 매번 특화된 데이터 수집 모듈을 개발해야 한다는 문제가 있다. 본 논문에서는 위와 같은 문제를 해결하기 위해 명세 기반 인공지능 데이터 수집 방법을 제안하여 데이터 수집 환경에 따른 데이터 수집 방법의 재사용성을 확보하고, 데이터 수집 기능 구현을 자동화할 수 있는 방법을 제시하고자 한다.

딥러닝을 이용한 영상내 물체 인식 기법

  • 박제강;박용규;온한익;강동중
    • 제어로봇시스템학회지
    • /
    • 제21권4호
    • /
    • pp.21-26
    • /
    • 2015
  • 지능형 시스템의 수요가 증가하면서 영상인식의 중요성이 부각되고 있다. 사람이 직접 물체 인식 과정을 모델링하는 방식을 넘어 최근에는 기계학습을 이용하여 이를 자동화하는 방법이 주를 이루고 있다. 그 중 딥러닝은 빅데이터를 활용하는 각종 분야에서 놀라운 성능을 보이며 기계학습 수준을 한 단계 진화시킨 기술로 평가 받고 있으며 영상 인식의 다양한 분야에서 응용되고 있다. 본 글에서는 딥러닝을 이용한 물체 검출 기법의 동향을 살펴보고 이를 차량 전면부 인식에 적용한 사례를 소개한다.

  • PDF

기계학습 기반 전력망 상태예측 모델 성능 유지관리 자동화 기법 (Management Automation Technique for Maintaining Performance of Machine Learning-Based Power Grid Condition Prediction Model)

  • 이해성;이병성;문상근;김준혁;이혜선
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제6권4호
    • /
    • pp.413-418
    • /
    • 2020
  • 초기 학습 데이터의 과적합으로 인한 전력망 상태예측 모델의 성능 감소를 방지하고 예측모델의 예측 정확도 유지를 통한 계속적인 현장활용을 위해서는 기계학습 모델의 예측 정확도를 지속적으로 관리할 필요가 있다. 이를 위해, 본 논문에서는 다양한 요인에 의해 끊임없이 변화하는 전력망 상태 데이터의 특성을 고려하여 예측모델의 정확성과 신뢰성을 높이고 현장 적용 가능한 수준의 품질을 유지하기 위한 기계학습 기반 전력망 상태예측 모델의 성능 유지관리 자동화 기법을 제안한다. 제안 기법은 워크플로우 관리 기술의 적용을 통해 전력망 상태예측 모델 성능 유지관리를 위한 일련의 태스크들을 워크플로우의 형태로 모델링하고 이를 자동화하여 업무를 효율화 하였다. 또한, 기존 기술에서는 시도되지 않았던 학습데이터의 통계적 특성 변화 정도와 예측의 일반화 수준을 모두 고려한 예측모델의 성능 평가를 통해 성능 결과의 신뢰성을 확보하고 이를 통해 예측 모델의 정확도를 일정 수준으로 유지관리하고 더욱 성능이 우수한 예측모델의 신규 개발이 가능하다. 결과적으로 본 논문에서 제안하는 전력망 상태예측 모델 성능 유지관리 자동화 기법을 통해 예측모델의 성능 저하문제를 해결하여 분산자원 연계 등 외부 환경의 변화에 유연한 예측모델 관리를 통해 정확성과 신뢰성이 보장된 예측 모델의 지속적인 활용이 가능하다.

Cognitive Impairment Prediction Model Using AutoML and Lifelog

  • Hyunchul Choi;Chiho Yoon;Sae Bom Lee
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권11호
    • /
    • pp.53-63
    • /
    • 2023
  • 본 연구는 고령층의 치매 예방을 위한 선별검사 수단으로 자동화된 기계학습(AutoML)을 활용하여 인지기능 장애 예측모형을 개발하였다. 연구 데이터는 한국지능정보사회진흥원의 '치매 고위험군 웨어러블 라이프로그 데이터'를 활용하였다. 분석은 구글 코랩 환경에서 PyCaret 3.0.0이 사용하여 우수한 분류성능을 보여주는 5개의 모형을 선정하고 앙상블 학습을 진행하여 모형을 통합한 뒤, 최종 성능평가를 진행하였다. 연구결과, Voting Classifier, Gradient Boosting Classifier, Extreme Gradient Boosting, Light Gradient Boosting Machine, Extra Trees Classifier, Random Forest Classifier 모형 순으로 높은 예측성능을 보이는 것으로 나타났다. 특히 '수면 중 분당 평균 호흡수'와 '수면 중 분당 평균 심박수'가 가장 중요한 특성변수(feature)로 확인되었다. 본 연구의 결과는 고령층의 인지기능 장애를 보다 효과적으로 관리하고 예방하기 위한 수단으로 기계학습과 라이프로그의 활용 가능성에 대한 고려를 시사한다.

시설물의 유지관리를 위한 기계학습 기반 콘크리트 균열 감지 프레임워크 (Machine Learning-based Concrete Crack Detection Framework for Facility Maintenance)

  • 지봉준
    • 한국지반환경공학회 논문집
    • /
    • 제22권10호
    • /
    • pp.5-12
    • /
    • 2021
  • 시설물의 노후화는 피할 수 없는 현상이다. 노후화된 시설물의 관리를 위해 균열을 감지하고 이를 추적하면서 시설물의 상태를 간접적으로 추론할 수 있다. 따라서 균열 감지는 노후화된 시설물의 관리를 위해 필수적 역할을 하며 감지 결과를 바탕으로 더 이상의 노후화를 막기 위한 활동을 할 수 있다. 하지만, 현재 대부분의 균열 감지는 전문가의 판단에만 의존하기에 시설물의 면적이 큰 경우 비용과 시간이 과도하게 사용되고, 전문가의 역량에 따라 다른 판단 결과가 발생할 수 있어 신뢰성에 문제가 있었다. 본 논문에서는 이러한 한계를 극복하기 위해 기계학습 기반의 콘크리트 균열 감지 프레임워크를 제안한다. 제안된 프레임워크는 데이터 분류, 기계학습 모델 학습, 학습된 모델의 검증과 테스트를 포함하는 프레임워크로 완전 자동화된 콘크리트 균열 감지가 가능하다. 제안된 프레임워크를 통해 학습된 기계학습 모델은 콘크리트 균열 이미지와 정상 이미지를 96%의 높은 정확도로 분류할 수 있었다. 본 논문에서 제안된 프레임워크를 적용하여 기존의 전문가 중심의 시설물 유지관리보다 더욱 효과적이고 효율적인 시설물의 유지관리가 가능할 것으로 기대된다.

Bayesian rule에 기초한 고속 Paper currency 인식 시스템 개발 (Development of high-speed paper currency recognition system based on Bayesian rule)

  • 조연호;이상훈;서일홍
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 D
    • /
    • pp.2474-2476
    • /
    • 2004
  • 지폐 인식 자동화기기가 여러 분야에 보편화되면서 다양한 지폐를 고속으로 처리할 수 있는 고속지폐 인식 자동화 기기가 요구되고 있다. 하지만 대부분의 지폐 인식 자동화 기기가 고속화에 적합하지 않은 구조로 설계되어 있고 신권 추가가 용이하지 않다. 본 논문은 고속 Paper Currency 인식 시스템에 적합한 범용 하드웨어 시스템과 Bayes Rule 기반의 고속 인식 알고리즘을 제안한다. 제안된 범용 하드웨어 구조는 고속의 CIS(Contact Image Sensor)와 DSP(Digital Signal Processor) 그리고 Dual Memory System으로 구성되었다. Bayes Rule에 기초한 고속 인식 알고리즘은 기존의 Paper Currency 인식 시스템에 사용되었던 기계학습 방법에 비해 신권 추가가 쉽고 적은 연산으로 권종을 판별할 수 있어 고속 지폐 인식 자동화기기에 적합하다. 본 논문에서는 제안된 방법들을 실제 자동화기기로 구현하여 그 유용성을 검증한다.

  • PDF

온톨로지 자동 구축과 온톨로지를 위한 지속적 자기 개선 모델에 대한 연구

  • 김윤덕;김기범;김종배
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2015년도 춘계학술대회
    • /
    • pp.166-167
    • /
    • 2015
  • 수동적 온톨로지 구축은 해당 도메인의 지식을 가진 전문가가 필요하고, 시간적인 소모가 크다. 또한 완성된 온톨로지의 수동적인 지속적 개선은 상당한 비용을 초래할 수 있다. 그래서 온톨로지의 자동 구축과 지속적 자기 개선 방법이 하나의 해결책이 될 수 있을 것이다. 따라서, 이 논문에서는 기계 학습을 통한 온톨로지 구축의 자동화 방법과 지속적 자기 개선 모델을 소개하고자 한다.

  • PDF