• Title/Summary/Keyword: 자동차 블랙박스

Search Result 63, Processing Time 0.026 seconds

Implementation of integrability hardware for knowing driving status data with OBD-2 network (OBD-2 네트워크를 위한 통합 OBD-2 커넥터 설계)

  • Baek, Sung-Hyun;Jang, Jong-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.511-514
    • /
    • 2011
  • Recently, devices such as smartphone and vehicle blackbox and EDR(Evern Data Recorder knowed automotive real-time control and driving data to use OBD-2(in-vehicle network). when devices receive vehicle driving data, communication way use each Wifi, Bluetooth. but if user and driver change device to use OBD-2 connect, the device differ communication network way. and driver buy and change OBD-2 connect. In this paper, to remedy one's shortcomings, there integrate Bluetooth and Wifi network module and design integrability hardware as any another device know vehicle real-time control and driving data with one integrability connect.

  • PDF

Compensation of Errors on Car Black Box Records and Trajectory Reconstruction Analysis (자동차 블랙박스 기록 오차 보정과 경로 재구성 해석)

  • Yang, Kyoung-Soo;Lee, Won-Hee;Han, In-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.6
    • /
    • pp.182-190
    • /
    • 2004
  • This paper presents reconstruction analysis of vehicle trajectory using records of a developed black box, and results of validation tests. For reconstruction of vehicle trajectory, the black box records the longitudinal and lateral accelerations and yaw-rate of vehicle during a pre-defined time period before and after the accident. One 2-axis accelerometer is used for measuring accelerations, and one vibrating structure type gyroscope is used for measuring yaw-rate of vehicle. The vehicle's planar trajectory can be reconstructed by integrating twice accelerations along longitudinal and lateral directions with yaw-rate values. However, there may be many kinds of errors in sensor measurements. The causes of errors are as follows: mis-alignment, low frequency offset drift, high frequency noise, and projecting 3-dimensional motion into 2-dimensional motion. Therefore, some procedures are taken for error compensation. In order to evaluate the reliability and the accuracy of trajectory reconstruction results, the black box was mounted on a passenger car. The vehicle was driven and tested along various specified lanes. Through the tests, the accuracy and usefulness of the reconstruction analysis have been validated.

Design and Implementation of a Motor Vehicle Emergency Situation Detection and Report System (차량용 사고상황 감지 및 통보 시스템 설계 및 구현)

  • Kwon, Doo-Wy;Lee, HoonJae;Park, Suhyun;Do, Kyeong-Hoon
    • Annual Conference of KIPS
    • /
    • 2010.11a
    • /
    • pp.399-400
    • /
    • 2010
  • 산업의 발전과 경제성장을 바탕으로 대한민국의 자동차 등록수는 매년 꾸준한 증가세를 보이고 있다. 이와 더불어 자동차 사고 또한 급격히 증가하고 있다. 대한민국은 OECD회원국중 교통사고 발생건수가 높은 편이고 사망자수 또한 상위에 랭크되어 있다. 이러한 사망자 수는 각 나라별 교통사고 발생건수 대비 사망자수와 비교시 높은 사망률을 보이고 있다. 또한 자동차 충돌 사고에서 빈번히 발생되는 운전자의 의식불명에 따른 초기 응급조치의 미흡, 뺑소니 또는 사고 후 방치되는 상황을 방지하기 위해 차량용 블랙박스와 사고발생 통보 시스템이 필요하다. 본 논문에서는 가속도센서를 이용하여 사고 발생시 충격 임계점을 계산한 후 사고 발생을 블루투스를 이용하여 스마트폰으로 전송한다, 또한, 교통사고 발생 후 환자의 응급 후송 및 2차 교통사고를 방지하기 위한 시스템의 필요성에 따라 블랙박스를 접목한 차량용 응급상황 감지 및 통보 시스템을 설계 및 구현하였다.

Implement Automobile Black Box System for Proving Cause of Sudden Unintended Acceleration (급발진 사고원인을 증명하기 위한 자동차 블랙박스 시스템 개발)

  • Kim, Minyoung;Jang, Jong-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.6
    • /
    • pp.1429-1434
    • /
    • 2014
  • Recently, SUA(Sudden Unintended Acceleration) are increasingly occurred. However, all the responsibilities of SUA are accepted by an innocent driver despite of painful results due to mystery of accurate cause. If a driver raises this kind of trouble to the corresponding manufacturer, the automaker collects EDR installed in that vehicle and provides the result of their analysis as it turns out most of the analysis results were diagnosed "there is nothing wrong with the car". In this trend, the technology to protect drivers' position from SUA should be developed. In this study, the researchers aimed to develop a black box system that collects additional data from throttle valve which is considered as one of major causes of SUA accidents, in order to explain cause of SUA and defend innocent drivers.

Design and Implementation of the Memory Management Module of a Vehicle Black Box (차량용 블랙박스의 메모리 관리 모듈 설계 및 구현)

  • Park, Ji-Sang;Jeon, Min-Ho;Lee, Myung-Eui
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.3
    • /
    • pp.209-214
    • /
    • 2014
  • Current black boxes have a problem of storing unnecessary imagery data recordings without data classification. For this reason, users have to erase videos every time. This method is inadequate for black boxes with limited memory capacity. In this paper, we design and implement a system that recognizes traffic accident situations and saves these recordings by classifying them according to weighted values. The system was made to save video recorded at a 30-sec interval of every event to black box folders by changing names based on weighted value data under the external environment in a 1:10 scale model car. Based on this, when the tests were performed as a major car accident while driving, the videos were created in w2 folder, and when the tests were performed as a minor car accident while stopped, the videos were created in w1 folder.

Development of an Automobile Black Box for Reconstruction Analysis of Collision Accidents (충돌사고 재구성 해석을 위한 차량 블랙박스의 개발)

  • 이원희;한인환
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.205-214
    • /
    • 2004
  • This paper presents design concepts, specifications and performances of a newly developed Black Box, the reconstruction analysis tool with the records, and results of validation tests. The Black Box can detect crash accidents automatically, and record the vehicle's motion and driver's maneuvers during a pre-defined time period before and after the accident. The items of the Black Box included the acceleration, yaw-rate, vehicle speed, engine RPM, braking application, steering and several digital inputs for recording driver's maneuvers. To detect the accident-related-crash, it is important to understand characteristics of the crash signal, which are much different from those of normal driving. Therefore, analytical considerations should be taken in designing pre-filtering circuits and selecting appropriate parameters for identifying crash accidents. And, it is necessary to select proper combination of motion sensors and design proper pre-filtering circuits in order to describe the vehicle's motion. The analysis algorithms were developed and implemented which can perform accurate detection of crash accidents, simulating pre-crash trajectories, and calculating parameters for reconstruction analysis of crash accidents. The developed Black Box was installed on passenger cars and several types of validation tests were conducted. Through the tests, the accuracy of the recorded data and usefulness of the analysis tool for reconstruction have been validated.

Smart Mobile Blackbox DVR in Car Environment (자동차 환경에서 스마트 모바일 블랙박스 DVR)

  • Choi, Sun-O;Kim, Young-Po;Im, Yong-Soon;Kim, Young-Ja;Kang, Eun-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.5
    • /
    • pp.9-15
    • /
    • 2013
  • In this paper, automatic recognition of an accident and whether service delivery and risk driving through the giving of the driver to correct driving habits before and after the accident to reproduce highly scalable video Smart Mobile Blackbox DVR (SMBD, Smart Mobile Blackbox DVR) Computer of the model was designed. SMBD on embedded systems equipped with wireless capabilities to sleep in the car accident point and the image information by wireless communications, by notification in the control center, 24-hour emergency rescue service and traffic information can be provided. The vehicle ECU (Electronic Control Unit) of the vehicle information and sensor data in conjunction with wireless eCall (Emergency Call) services can be realized.

Obstacle Detection and Recognition System for Autonomous Driving Vehicle (자율주행차를 위한 장애물 탐지 및 인식 시스템)

  • Han, Ju-Chan;Koo, Bon-Cheol;Cheoi, Kyung-Joo
    • Journal of Convergence for Information Technology
    • /
    • v.7 no.6
    • /
    • pp.229-235
    • /
    • 2017
  • In recent years, research has been actively carried out to recognize and recognize objects based on a large amount of data. In this paper, we propose a system that extracts objects that are thought to be obstacles in road driving images and recognizes them by car, man, and motorcycle. The objects were extracted using Optical Flow in consideration of the direction and size of the moving objects. The extracted objects were recognized using Alexnet, one of CNN (Convolutional Neural Network) recognition models. For the experiment, various images on the road were collected and experimented with black box. The result of the experiment showed that the object extraction accuracy was 92% and the object recognition accuracy was 96%.

Design of Driving Record System using Block Chain (블록체인을 이용한 주행 기록 시스템 설계)

  • Seo, Eui-Seong;Jang, Jong-wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.205-206
    • /
    • 2018
  • Recently, interest in unmanned vehicles, autonomous vehicles and connected cars has increased, and autonomous driving capability is also increasing. Depending on the autonomous driving ability, the maximum number of steps is divided into 6 steps. The higher the step, the less the involvement of the person in the running, and the person does not need to be involved at the highest stage. Today's autonomous vehicles have been developed in stages 4 to 5, but solutions are not clearly defined in case of an accident, so only the test run is possible. Such an accident occurring during traveling is almost inevitable, and it is judged who has made a mistake in case of an accident, which increases the punishment for the accident. Although a black box is used to clarify such a part, it is easy to delete a photographed image, and it is difficult to solve an accident such as a hit-and-run. In this paper, we design a driving record system using black chain to solve such an accident.

  • PDF

Design of Driving Record System using Block Chain (블록체인을 이용한 주행 기록 시스템 설계)

  • Seo, Eui-seong;Jang, Jong-wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.6
    • /
    • pp.916-921
    • /
    • 2018
  • Recently, interest in autonomous vehicle has increased, and autonomous driving capability is also increasing. Depending on the autonomous driving ability, the maximum number of steps is divided into 6 steps. The higher the step, the less the involvement of the person in the running, and the person does not need to be involved at the highest stage. Today's autonomous vehicles have been developed high level, but solutions are not clearly defined in case of an accident, so only the test run is possible. Such an accident occurring during traveling is almost inevitable, and it is judged who has made a mistake in case of an accident, which increases the punishment for the accident. Although a black box is used to clarify such a part, it is easy to delete a record, and it is difficult to solve an accident such as a hit-and-run. In this paper, i design a driving record system using black chain to solve accidents.