• Title/Summary/Keyword: 자기 치유

Search Result 219, Processing Time 0.026 seconds

A Fundamental Study on the Influence of Performance of Cementitious Composites of Inorganic Core Material for Self-Healing Capsule of Cracks (균열 자기치유를 위한 캡슐용 무기계 코어재료의 시멘트 복합체 성능에 미치는 영향에 관한 기초적 연구)

  • Choi, Yun-Wang;Oh, Sung-Rok;Choi, Byung-Keol;Kim, Cheol-Gyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.1
    • /
    • pp.74-82
    • /
    • 2017
  • In this study, we prepared a core material based on the inorganic materials in liquid form for applying an inorganic-based core material to a core material for the self-healing capsules as a part of the basic study to manufacture of self-healing capsule that can heal cracks of cementitious composite. Manufactured core material based on the inorganic materials were applied directly to the cement composite before its encapsulation, were evaluated the effect on performance of cementitious composite as wall as repair performance of the cracks in the cracks. The test results showed that core material based on the inorganic materials was effective to improve the compressive and adhesion strength, had an absorption, permeation water, penetration of chloride iones and freeze-thaw resistance performance. Through the results of this paper, we want to utilize the results as a basis data of the performance of the cement composite that can be obtained when applied to inorganic core materials based on self-healing capsules and future advances localized self-healing capsule technology.

Physical Properties of Self-healing Concrete Mixed with Hydrogel Carrier of Microorganism (미생물 혼입 하이드로젤 지지체 첨가에 따른 자기치유 콘크리트의 물성 변화)

  • Chu, Inyeop;Woo, Jinho;Woo, Sang-Kyun;Lee, Byungjae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.24-29
    • /
    • 2018
  • The properties of concrete with addition of microgel - containing hydrogel support were investigated. As a result of measuring the slump of the self - healing concrete, the target slump was satisfied in all the mixing conditions, but the slump was decreased as the mixing amount of the hydrogel support increased. The change of porosity due to incorporation of hydrogel support was minimal. As a result of the evaluation of the compressive strength of the self - healing concrete, the incorporation of the hydrogel support did not affect the strength. However, under the same mixing condition, the dispersion value of the specimens tended to increase with increasing hydrogel support contents. As a result of the permeability test of self-healing concrete according to the incorporation of hydrogel support, it was confirmed that the mixing ratio of hydrogel support was effective to decrease the permeability coefficient.

Development of Oxygen Diffusion Test Method for Crack Width Evaluation of Self-Healing Concrete (자기치유 콘크리트의 균열치유 성능평가를 위한 개선된 산소확산 시험방법 제안)

  • Lee, Do-Keun;Shin, Kyung-Joon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.3
    • /
    • pp.375-382
    • /
    • 2021
  • Self-healing concrete is in the spotlight in that it can effectively extend the lifespan of concrete structures by healing cracks in the structure by themselves without additional repairing or retrofiting actions. Currently, self-healing concrete is a field that is being actively studied around the world, but since most studies focus on the improvement of healing performance, there is a lack of methods to rationally evaluate the self-healing performance of concrete. Although the gas diffusion test method has been developed for the use in the performance evaluation of self-healing concrete, it has revealed that for gas diffusion through the matrix affect the crack diffusion coefficients depending on the environmental conditions such as the saturation of the specimen, the temperature, and humidity during the experiment. Therefore, in this study, the method has been proposed to eliminate the influence of the matrix diffusion when calculating the crack diffusion coefficient. In addition, a pre-conditioning process was introduced to shorten the experimental time. As a result, the crack width could be estimated with an error level of less than 3% in the test time of about 20 minutes.

Importance of Impregnation and Polishing for Backscattered Electron Image Analysis for Cementitious Self-Healing Specimen (시멘트계 자기치유 시편에 대한 반사전자현미경 이미지 분석을 위한 함침과 연마의 중요성)

  • Kim, Dong-Hyun;Kang, Kook-Hee;Bae, Seung-Muk;Lim, Young-Jin;Lee, Seung-Heun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.4
    • /
    • pp.435-441
    • /
    • 2017
  • Studies on self-healing have currently been diversified and the methods to evaluate the studies have become more diversified as well. Among them, the back-scattered electron (BSE) image acquired through the scanning electron microscope (SEM) is attempted as the means to evaluate the self-healing effect on cracks. In order evaluate by the BSE image, sophisticated pre-processing of specimen is critical and this injected inside the particle, pore and artificial crack of the hardener to stabilize the structure of the newly generated self-healing product and it enables to endure the stress on polishing without deformation. The impregnated specimen smoothen the surface to obtain the BSE image of high resolution that polishing is made for diamond suspension for wet polishing after dry polishing. As a result of evaluating the self-healing product on the impregnated and polished self-healing specimen, the generated product is formed from the surface of the artificial crack and the self-healing substances are confirmed as $Ca(OH)_2$ and C-S-H.

The Effect of the Self-Healing Microcapsules on the Quality and Healing Properties of Cement Composites (자기치유 마이크로캡슐이 시멘트 복합재료의 품질 및 치유특성에 미치는 영향)

  • Kim, Cheol-Gyu;Oh, Sung-Rok;Kim, Ji-Hun;Choi, Yun-Wang
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.3
    • /
    • pp.389-396
    • /
    • 2021
  • In this paper, it was evaluated that the effect of self-healing microcapsules on the quality and healing properties of cement composites. In the mixing of microcapsules, the plastic viscosity and yield stress of the cement composites decreased due to the particle properties of the microcapsules, and decreased in proportion to the mixing ratio. The table flow showed a tendency to decrease as the core material acted as a stimulant due to the loss of microcapsules, and the compressive strength could be supplemented through unit quantity correction. As a result of evaluating the effect of microcapsule mixing on the healing properties of cement composites, it was found that the unit water flow rate decreased by the healing reaction immediately after crack initiation. When more than 3% of microcapsules were mixed, it was found that there was a healing rate of more than 95% at 7 days of healing age.

Development of Crack Monitoring System for Self-healing Repair Mortar Surface Using Image Processing Technique (이미지 처리 기법을 이용한 자기치유 보수 모르타르 시공표면의 균열 모니터링 시스템 개발)

  • Oh, Sang-Hyuk;Moon, Dae-Jung;Lee, Kwang-Myong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.3
    • /
    • pp.359-366
    • /
    • 2021
  • In this study, It was developed an monitoring cracks system based on image processing techniques in order to measure cracks, which are major damages in concrete, and to convert them into a database. The crack monitoring system consists of crack image captured equipment and a crack detection and analysis software. This system provides objective and quantitative data by replacing the conventional visual inspection. The crack detection algorithm w as verified through an indoor test using virtual cracks, and the amount of crack detection and crack width change was monitored by applying it to the self-healing repair mortar construction site. In the case of the crack width detected through image analysis, the maximum difference from the actual crack width was 0.0334mm. It was possible to detect microcracks of 0.1mm or less, and the effect of crack healing over time of the self-healing repair mortar was confirmed trough the field test.

Self-healing Engineering Materials: II. Inorganic Materials (자기치유 공학재료: II. 무기재료)

  • Kim, Min-Hee;Kang, Dong-Eun;Yoon, Ji-Hwan;Choi, Eun-Ji;Shim, Sang-Eun;Yun, Ju-Ho;Kim, Il
    • Clean Technology
    • /
    • v.17 no.2
    • /
    • pp.85-96
    • /
    • 2011
  • Self-healing materials are a class of smart materials that have the structurally incorporated ability to repair damage caused by mechanical usage over time. A material (polymers, ceramics, metals, etc.) that can intrinsically correct damage caused by normal usage could lower production costs of a number of different industrial processes through longer part lifetime, reduction of inefficiency over time caused by degradation, as well as prevent costs incurred by material failure. The recent announcement from Nissan on the commercial release of scratch healing paints for use on car bodies has gained public interest on such a wonderful property of materials. This article is a second part of healing materials dealing with inorganic engineering materials such as metals, ceramics, and concrete. The healing mechanisms developed for the inorganic materials are to be discussed with the future prospect.

Experimental Study on the Manufacturing and Waterproofing Properties of Self-healing Concrete Waterproofing Agent Using Microcapsules (마이크로캡슐을 활용한 자기치유 구체방수제의 제조 및 방수특성에 관한 실험적 연구)

  • Yun-Wang Choi;Jae-Heun Lee;Neung-Won Yang
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.289-298
    • /
    • 2023
  • In this study, the development of a self-healing concrete waterproofing agent was examined, focusing on its manufacturing and waterproofing properties. The optimal ratio using microcapsules for the concrete waterproofing agent was determined through assessments of flow, compressive strength, and permeability conducted during the mortar stage. These findings aimed to provide fundamental data for evaluating the self-healing properties of the concrete waterproofing agent designed for use in concrete structures. The self-healing concrete waterproofing agent was comprised of three types of inorganic materials commonly used for repair purposes. From experimental results, a composition ratio with a high potassium silicate content, referred to as SIM-2, was found suitable. A surfactant mixing ratio of 0.03 % was identified to enhance the dispersibility of the concrete waterproofing agent, while a mixing ratio of 0.2 % distilled water was deemed suitable for viscosity adjustment. For the magnetic self-healing concrete waterproofing agent's healing agent, using microcapsules in the range of 0.5 % to 0.7 % met the KS F 4949 and KS F 4926 standards.

Visualization of Self-Healing Function of Protective Coating for Concrete (콘크리트 보호코팅재의 자기치유 기능의 시각화)

  • Kim, Dong-Min;Choi, Ju-Young;Jin, Seung-Won;Nam, Kyeong-Nam;Park, Hyeong-Joo;Chung, Chan-Moon
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.10
    • /
    • pp.87-93
    • /
    • 2019
  • Microcapsules were prepared by using a mixture of linseed oil and a small amount of fluorescent fluid as a core material. Self-healing protective coatings were prepared by applying coating formulations containing varying amounts of microcapsules on mortar surface. After scratch or crack was generated in the coating, when the damaged region was exposed to ultraviolet light (${\lambda}=365nm$), it was observed that fluorescence emission area increased with increasing microcapsule loading. In the cases of the self-healing coatings having 20wt% or more microcapsule loading, the damaged region was almost filled with the healing agent. In water sorptivity test, the self-healing coating having 20wt% or more microcapsule loading showed a healing efficiency of about 85%. The fluorescence emission from the damaged region was easily observed at a distance of 3 m. The self-healing protective coating is expected to be useful to confirm its self-healing function with the eye.

Experimental Study on the Quality Properties of Precast Concrete Utilizing Self-Healing Capsules as an Essential Technology for Smart City Implementation (스마트 시티 구현을 위한 요소기술로써 균열 자기치유 캡슐 활용 프리캐스트 콘크리트의 품질특성 평가에 관한 실험적 연구)

  • Sung-Rok Oh;Eun-Joon Nam;Neung-Won Yang;Yun-Wang Choi
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.568-575
    • /
    • 2023
  • This paper aims to evaluate the quality characteristics and healing performance of precast concrete incorporating self-healing technology as a key technique for the construction of smart cities. The study found that precast concrete mixed with hybrid capsules exhibited a tendency of reduced slump and air content, impacting the quality characteristics. Specifically, the slump decreased by up to 14 %, and the air content by up to 9 %. Moreover, the inclusion of hybrid capsules in the concrete resulted in a maximum decrease of 16 % in compressive strength and 18 % in flexural strength. However, the introduction of hybrid capsules significantly enhanced the crack healing performance. The assessment through water permeability tests showed that the healing rate of 0.3 mm crack width after a 28-day healing period improved as the mixing ratio increased, with the healing rates at 1 %, 3 %, and 5 % hybrid capsule mixtures observed to increase by approximately 16 %, 25 %, and 32 %, respectively.