DOI QR코드

DOI QR Code

Development of Oxygen Diffusion Test Method for Crack Width Evaluation of Self-Healing Concrete

자기치유 콘크리트의 균열치유 성능평가를 위한 개선된 산소확산 시험방법 제안

  • Received : 2021.08.18
  • Accepted : 2021.09.20
  • Published : 2021.09.30

Abstract

Self-healing concrete is in the spotlight in that it can effectively extend the lifespan of concrete structures by healing cracks in the structure by themselves without additional repairing or retrofiting actions. Currently, self-healing concrete is a field that is being actively studied around the world, but since most studies focus on the improvement of healing performance, there is a lack of methods to rationally evaluate the self-healing performance of concrete. Although the gas diffusion test method has been developed for the use in the performance evaluation of self-healing concrete, it has revealed that for gas diffusion through the matrix affect the crack diffusion coefficients depending on the environmental conditions such as the saturation of the specimen, the temperature, and humidity during the experiment. Therefore, in this study, the method has been proposed to eliminate the influence of the matrix diffusion when calculating the crack diffusion coefficient. In addition, a pre-conditioning process was introduced to shorten the experimental time. As a result, the crack width could be estimated with an error level of less than 3% in the test time of about 20 minutes.

자기치유 콘크리트는 직접적인 보수보강 없이도 스스로 구조물의 균열을 치유하여 효율적으로 콘크리트 구조물의 수명연장이 가능하다는 측면에서 각광받고 있다. 현재 자기치유 콘크리트는 전 세계적으로 활발히 연구가 진행되고 있는 분야이지만 대부분의 연구는 치유 성능의 향상에 초점을 맞추고 있기 때문에 객관적으로 치유성능을 평가하는 방법은 부족한 실정이다. 자기치유 콘크리트의 성능평가에 활용하기 위해 기체확산실험 방법이 개발된 바가 있지만, 시편의 포화도 및 실험시의 온습도 등과 같은 환경조건의 통제가 필요하다는 단점이 있다. 따라서 본 연구에서는 기체 확산 실험시에 필요한 환경조건을 대폭 완화하여 적용성을 향상시키고자 하였다. 아울러 실험시간을 단축시키고자 사전 안정화 과정을 도입하였고, 약 20분이내의 실험시간에서 3%이내의 오차 수준으로 균열폭의 추정이 가능하였다.

Keywords

Acknowledgement

본 연구는 국토교통부 건설기술연구사업의 연구비지원(21SCIP-C159066-02)에 의해 수행되었습니다.

References

  1. Abbas, A., Carcasses, M., Ollivier, J.P. (1999). Gas permeability of concrete in relation to its degree of saturation, Materials and structures, 32(1), 3-8. https://doi.org/10.1007/BF02480405
  2. ASCE (2021). 2021 Report Card for America's Infrastructure, American Society of Civil Engineering, Report, Available at: http://www.asce.org/reportcard/.
  3. Edvardsen, C. (1999). Water permeability and autogenous healing of cracks in concrete, ACI Mater. J., 96, 448-454.
  4. Houaria, M.B.A., Abdelkader, M., Marta, C., Abdelhafid, K. (2017). Comparison between the permeability water and gas permeability of the concretes under the effect of temperature, Energy Procedia, 139, 725-730. https://doi.org/10.1016/j.egypro.2017.11.278
  5. Huang, H. (2014). Thermodynamics of Autogenous Self-Healing in Cementitious Materials.
  6. Huang, H., Ye, G., Qian, C., Schlangen, E. (2016). Self-healing in cementitious materials: materials, methods and service conditions, Materials & Design, 92, 499-511. https://doi.org/10.1016/j.matdes.2015.12.091
  7. Lee, D.K., Lim, M.H., Shin, K.J., Lee, K.M. (2019). Crack width estimation of mortar specimen using gas diffusion experiment, Materials, 12(18), 3003. https://doi.org/10.3390/ma12183003
  8. Rooij, M.D., Tittelboom, K.V., Belie, N.D., Schlangen, E. (2013). Self-Healing Phenomena in Cement-Based Materials - State-of-the-Art Report of RILEM Technical Committee 221-SHC, Springer, Netherlands.
  9. Okoyama, K., Sato, H., Ogihara, K., Toriumi, R. (1996). Development of A Bridge Management System In JAPAN, Bridge Management 3, E & FN SPON, 580-586.
  10. Qian, C., Zheng, T., Zhang, X., Su, Y. (2021). Application of microbial self-healing concrete: case study, Construction and Building Materials, 290, 123226. https://doi.org/10.1016/j.conbuildmat.2021.123226
  11. Shin, K.J., Bae, W.H., Kim, S.W., Lee, K.M. (2016). Validation of permeability test for crack width assessment of concrete, healCON, TU Delft, Netherlands, 96, 448-454.
  12. KALIS (2010). 2010 Survey on the Safety and Maintenance of Facility Managers, Report, Korea Authority of Land & Infrastructure Safety.
  13. Van Tittelboom, K., De Belie, N. (2013). Self-healing in cementitious materials-a review, Materials, 6(6), 2182-2217. https://doi.org/10.3390/ma6062182
  14. Zhang, W., Zheng, Q., Ashour, A., Han, B. (2020). Self-healing cement concrete composites for resilient infrastructures: a review, Composites Part B: Engineering, 189, 107892. https://doi.org/10.1016/j.compositesb.2020.107892