Browse > Article
http://dx.doi.org/10.7464/ksct.2011.17.2.085

Self-healing Engineering Materials: II. Inorganic Materials  

Kim, Min-Hee (The WCU Center for Synthetic Polymer Bioconjugate Hybrid Materials, Department of Polymer Science and Engineering, Pusan National University)
Kang, Dong-Eun (The WCU Center for Synthetic Polymer Bioconjugate Hybrid Materials, Department of Polymer Science and Engineering, Pusan National University)
Yoon, Ji-Hwan (The WCU Center for Synthetic Polymer Bioconjugate Hybrid Materials, Department of Polymer Science and Engineering, Pusan National University)
Choi, Eun-Ji (The WCU Center for Synthetic Polymer Bioconjugate Hybrid Materials, Department of Polymer Science and Engineering, Pusan National University)
Shim, Sang-Eun (Department of Chemical Engineering, Inha University)
Yun, Ju-Ho (Environmental Materials & Components R&D Center, Korea Automotive Technology Institute)
Kim, Il (The WCU Center for Synthetic Polymer Bioconjugate Hybrid Materials, Department of Polymer Science and Engineering, Pusan National University)
Publication Information
Clean Technology / v.17, no.2, 2011 , pp. 85-96 More about this Journal
Abstract
Self-healing materials are a class of smart materials that have the structurally incorporated ability to repair damage caused by mechanical usage over time. A material (polymers, ceramics, metals, etc.) that can intrinsically correct damage caused by normal usage could lower production costs of a number of different industrial processes through longer part lifetime, reduction of inefficiency over time caused by degradation, as well as prevent costs incurred by material failure. The recent announcement from Nissan on the commercial release of scratch healing paints for use on car bodies has gained public interest on such a wonderful property of materials. This article is a second part of healing materials dealing with inorganic engineering materials such as metals, ceramics, and concrete. The healing mechanisms developed for the inorganic materials are to be discussed with the future prospect.
Keywords
Ceramics; Concretes; Inorganic materials; Metals; Self-healing materials;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lepech, M. D., and Li, V. C., "Long Term Durability Performance of Engineered Cementitious Composites," Int. J. Restoration Buildings Monuments, 12, 119-132 (2006).
2 Worrell, E., Price, L., Martin, N., Hendriks, C., and Ozawa Meida, L., "Carbon Dioxide Emissions from the Global Cement Industry," Annu. Rev. Energy Environ., 26, 303-329 (2001).   DOI   ScienceOn
3 Bang, S. S., Galinat, J. K., and Ramakrishnan, V., "Calcite Precipitation Induced by Polyurethane-Immobilized Bacillus Pasteurii," Enzyme Microb. Technol., 28, 404-409 (2001).   DOI   ScienceOn
4 De Muynck, W., Debrouwer, D., De Belie, N., and Verstraete, W., "Bacterial Carbonate Precipitation Improves the Durability of Cementitious Materials," Cement Concrete Res., 38, 1005-1014 (2008).   DOI   ScienceOn
5 Jonkers, H. M., "Self Healing Concrete: A Biological Approach. In Self Healing Materials: An Alternative Approach to 20 Centuries of Materials Science," Springer Series in Materials Science, 100, 195-204 (2007).
6 Laha, K., Kyono, J., and Shinya, N., "Some Chemical and Microstructural Factors Influencing Creep Cavitation Resistance of Austenitic Stainless Steels," Philos. Mag., 87, 2483-2505 (2007).   DOI   ScienceOn
7 Laha, K., Kyono, J., and Shinya, N., "Advanced Creep Cavitation Resistance of Cu-Containing 18Cr - 12Ni - Nb Austenitic Stainless Steel," Scr. Mater., 56, 915-918 (2007).   DOI   ScienceOn
8 Shinya, N., and Kyono, J., "Effect of Boron Nitride Precipitation at Cavity Surface on Rupture Properties," Mater. Trans., 47, 2302-2307 (2006).   DOI   ScienceOn
9 Laha, K., Kyono, J., Sasaki, T., Kishimoto, S., and Shinya, N., "Austenitic Stainless Steel through the Self-healing Effect of Boron for Creep Cavitation," Metall. Mater. Trans. A, 36A, 399-409 (2005).
10 Shinya, N., Kyono, J., and Laha, K., "Self-Healing Effect of B Segregation on Creep Cavitation in Type 347 Austenitic Stainless Steel," J. Soc. Mater. Sci. Jap., 55, 317-322 (2006).   DOI   ScienceOn
11 Lumley, R. N., O Donnell, K. G., Polmer, I. J., and Griffiths, J. R., "Enhanced Fatigue Resistance by Underageing an Al-Cu-Mg-Ag Alloy," Mater. Forum, 29, 256-261 (2005).
12 Lumley, R. N., and Polmer, I. J., "Proceedings of the 1st International Conference on Self Healing Materials," First International Conference on Self Healing Materials, Noordwijk aan Zee, 2007.
13 Lumley, R., "Advances in self healing of metals. In Self Healing Materials: An Alternative Approach to 20 Centuries of Materials Science," Springer Series in Materials Science, 100, 219-254 (2007).
14 Lumley, R. N., Polmear, I. J., and Morton, A. J., "Interrupted Aging and Secondary Precipitation in Aluminium Alloys," Mater. Sci. Technol., 19, 1483-1490 (2003).   DOI   ScienceOn
15 Hautakangas, S., Schut, H., van der Zwaag, S., Rivera Diaz del Castillo, P. E. J., and van Dijk, N. H., "The Role of the Aging Temperature on the Self Healing Kinetics in an Underaged AA2024 Aluminium Alloy. In Self Healing Materials: An Alternative Approach to 20 Centuries of Materials Science," Springer Series in Materials Science, 100, 1-7 (2007).
16 Hautakangas, S., Schut, H., and van Dijk, N. H., "Self Healing of Deformation Damage in Underaged Al-Cu-Mg Alloys," Scr. Mater., 58, 719-722 (2008).   DOI   ScienceOn
17 Nakao, W., Chiba Y., Iwata, K., Nishi, Y., and Ando, K., "Strengthening of Ceramics Surface by Crack Healing and Electron Beam Irradiation," Int. J. Appl. Ceram. Tech., DOI:10.1111/j.1744-7402.2009.02445.x.
18 Jonkers, H. M., and van Loosdrecht, M. C. M., "BioGeoCivil Engineering," Ecol. Eng., 36, 97-98 (2010).   DOI   ScienceOn
19 Kim, B. S., Ando, K., Chu, M. C., and Saito, S., "Crack-Healing Behavior of Monolithic Alumina and Strength of Crack-Healed Member," J. Soc. Mater. Sci. Jap., 52(6), 667-673 (2003).   DOI   ScienceOn
20 Ando, K., Kim, B. S., Kodama, S., Ryu, S. H., Takahashi, K., and Saito, S., "Fatigue Strength of an $Al_{2}O_{3}$/SiC Composite and a Monolithic $Al_{2}O_{3}$ Subjected to Crack-Healing Treatment," J. Soc. Mater. Sci. Jap., 52(11), 1464-1470 (2003).   DOI
21 Sloof, W. G., "Self healing in coatings at high temperatures. In Self Healing Materials: An Alternative Approach to 20 Centuries of Materials Science," Springer Series in Materials Science, 100, 309-321 (2007).
22 Song, G. M., Pei, Y. T., Sloof, W. G., Li, S. B., De Hosson, J. Th. M., and van der Zwaag, S., "Early Stages of Oxidation of $Ti_{3}AlC_{2}$ Ceramics," Mater. Chem. Phys., 112, 762-768 (2008).   DOI   ScienceOn
23 Kochubey, V., and Sloof, W. G., "Self Healing Mechanism in Thermal Barrier Coatings," Proc. Int. Thermal Spray Conf., Maastricht, The Netherlands, 2-4 June 2008.
24 Ando, K., Furusawa, K., Takahashi, K., and Sato, S. "Crack-Healing Ability of Structural Ceramics and a New Methodology to Guarantee the Structural Integrity," J. Eur. Ceram. Soc., 25, 549-558 (2005).   DOI   ScienceOn
25 Song, G. M., Pei, Y. T., Sloof, W. G., Li, S. B., De Hosson, J. Th. M., and van der Zwaag, S., "Oxidation Induced Crack Healing of $Ti_{3}AlC_{2}$ Ceramics," Scr. Mater., 58, 13-16 (2008).   DOI   ScienceOn
26 Li, V. C., and Yang, E., "Self Healing in Concrete Materials. In Self Healing Materials: An Alternative Approach to 20 Centuries of Materials Science," Springer Series in Materials Science, 100, 161-194 (2007).
27 Nijland, T. G., Larbi, J. A., van Hees, R. P. J., Lubelli, B., and de Rooij, M., "Self Healing Phenomena in Concretes and Masonry Mortars: a Microscopic Study," Proc. 1st Int. Conf. on Self Healing Materials, Dordrecht, The Netherlands: Springer, 2007, pp. 1-9.
28 Yang, E. H., and Li, V. C., "Strain-hardening Fiber Cement Optimization and Component Tailoring by means of a Micromechanical Model," J. Construct. Build. Mater., 24, 130-139 (2010).   DOI   ScienceOn
29 Thompson, A. M., Chan, H. M., and Harmer, M. P., "Crack Healing and Stress Relaxation in $Al_{2}O_{3}$-SiC Nanocomposites," J. Am. Ceram. Soc., 78(3), 567-571 (1995).   DOI   ScienceOn
30 Chou, I. A., Chan, H. M., and Harmer, M. P., "Effect of Annealing Environment on the Crack Healing and Mechanical Behavior of SiC Reinforced Alumina Nanocomposites," J. Am. Ceram. Soc., 81(5), 1203-1208 (1998).
31 Wu, H. Z., Lawrence, C. W., Roberts, S. G., and Derby, B. "The Strength of $Al_{2}O_{3}$/SiC Nanocomposites after Grinding and Annealing," Acta Materialia, 46(11), 3839-3848 (1998).   DOI   ScienceOn
32 Liu, S.-P., Ando, K., Kim, B.-S., and Takahashi, K., "In Situ Crack-Healing Behavior of $Al_{2}O_{3}$/SiC Composite Ceramics under Static Fatigue Strength," Int. Commun. Heat & Mass Transfer, 36, 563-568 (2009).   DOI   ScienceOn
33 Ghosh S. K., "Self-healing Materials Fundamentals, Design Strategies, and Applications," Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2009.
34 Chu, M. C., Sato, S., Kobayashi, Y., and Ando, K., "Damage Healing and Strengthening Behavior in Intelligent Mullite/SiC Ceramics," Fatigue Fract. Eng. Mater. Struct., 18(9), 1019-1029 (1995).
35 Ando, K., Tsuji, K., Hirasawa, T., Kobayashi, Y., Chu, M. C., and Sato, S., "Crack Healing Behavior and High Temperature Strength of Mullite/SiC Composite Ceramics," J. Soc. Mater. Sci., Jap., 48(5), 489-494 (1999).   DOI
36 Ando, K., Tsuji, K., Ariga, M., and Sato, S., "Fatigue Strength Properties of Crack Healed Mullite/SiC Composite Ceramics," J. Soc. Mater. Sci. Jap., 48(10), 1173-1178 (1999).   DOI   ScienceOn
37 Ando, K., Ikeda, T., Sato, S., Yao, F., and Kobayasi, Y., "A Preliminary Study on Crack Healing Behaviour of $Si_{3}N_{4}$/SiC Composite Ceramics," Fatigue Fract. Eng. Mater. Struct., 21, 119-122 (1998).
38 Ando, K., Chu, M. C., Yao, F., and Sato, S., "Fatigue Strength of Crack-Healed $Si_{3}N_{4}$/SiC Composite Ceramics," Fatigue Fract. Eng. Mater. Struct., 22, 897-903 (1999).   DOI
39 Yao, F., Ando, K., Chu, M. C., and Sato, S., "Crack-Healing Behavior, High Temperature and Fatigue Strength of SiC-Reinforced Silicon Nitride Composite," J. Mater. Sci. Lett., 19, 1081-1083 (2000).   DOI   ScienceOn
40 Ando, K., Kim, B. S., Chu, M. C., Saito, S., and Takahashi, K., "Crack-Healing and Mechanical Behaviour of $Al_{2}O_{3}$/SiC Composites at Elevated Temperature," Fatigue Fract. Eng. Mater. Struct., 27, 533-541 (2004).   DOI   ScienceOn
41 Heuer, A. H., and Roberts, J. P., "The Influence of Annealing on the Strength of Corundum Crystals," Pro. Brit. Ceram. Soc., 6, 17-27 (1966).
42 Lange, F. F., and Gupta, T. K., "Crack Healing by Heat Treatment," J. Am. Ceram. Soc., 53(1), 54-55 (1970).   DOI
43 Davies, L. M., "Effect of Heat Treatment on the Tensile Strength of Sapphire," Pro. Brit. Ceram. Soc., 6, 29-53 (1966).
44 Gupta, T. K., "Kinetics of Strengthening of Thermally Shocked MgO and $Al_{2}O_{3}$," J. Am. Ceram. Soc., 59(9-10), 448-449 (1976).   DOI
45 Lange, F. F., and Radford, K. C., "Healing of Surface Cracks in Polycrystalline $Al_{2}O_{3}$," J. Am. Ceram. Soc., 53(7), 420-421 (1970).   DOI
46 Roberts, J. T. A., and Wrona, B. J., "Crack Healing in $UO_{2}$," J. Am. Ceram. Soc., 56(6), 297-299 (1973).   DOI   ScienceOn
47 Bandyopadhyay, G., and Roberts, J. T. A., "Crack Healing and Strength Recovery in $UO_{2}$," J. Am. Ceram. Soc., 59(9-10), 415-419 (1976).   DOI   ScienceOn
48 Evans, A. G., and Charles, E. A., "Strength Recovery by Diffusive Crack Healing," Acta Metall., 25, 919-927 (1977).   DOI   ScienceOn
49 Lange, F. F., "Healing of Surface Cracks in Sic by Oxidation," J. Am. Ceram. Soc., 53(5), 290-296 (1970).   DOI
50 Easler, T. E., Bradt, R. C., and Tressler, R. E., "Effects of Oxidation under Load Strength Distributions of $Si_{3}N_{4}$," J. Am. Ceram. Soc., 65(6), 317-320 (1982).   DOI   ScienceOn
51 Chu, M. C., Cho, S. J., Yoon, K. J., and Park, H. M., "Crack Repairing in Alumina by Penetrating Glass," J. Am. Ceram. Soc., 88(2), 491-493 (2005).   DOI   ScienceOn
52 Niihara, K., and Nakahira, A., "Strengthening of Oxide Ceramics by SiC and Si3N4 dispersions," Proceeding of the Third International Symposium on Ceramic Materials and Components for Engines, American Ceramics Society, Westerville, 1998, pp. 919-926.
53 Niihara, K., "New Design Concept of Structural Ceramics-Nanocomposites," J. Am. Ceram. Soc., 9(10), 974-982 (1991).
54 Niihara, K., Nakahira, A., and Sekino, T., "New Nano Composite Structural Ceramics," Materials Research Society Symposium Proceedings, 286, 405-412 (1993).
55 Shinya, N., "Self Healing of Mechanical Damage in Metallic Materials," Adv. Sci. Tech., 54, 152-157 (2008).   DOI