• Title/Summary/Keyword: 자기 조직화 특징 지도

Search Result 39, Processing Time 0.023 seconds

A Study on the Digital Hardware Implementation of Self-Organizing feature Map Neural Network with Constant Adaptation Gain and Binary Reinforcement Function (일정 학습계수와 이진 강화함수를 가진 SOFM 신경회로망의 디지털 하드웨어 구현에 관한 연구)

  • 조성원;석진욱;홍성룡
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.10a
    • /
    • pp.402-408
    • /
    • 1997
  • 일정 학습계수와 이진 강화함수를 지닌 자기조직화 형상지도(Self-Organizing Feature Map)신경회로망을 FPGA위에 하드웨어로 구현하였다. 원래의 SOFM 알고리즘에서 학습계수가 시간 종속형인데 반하여, 본 논문에서 하드웨어로 구현한 알고리즘에서는 학습계수가 일정인 값으로 고정되며 이로 인한 성능저하를 보상하기 위하여 이진 강화함수를 부가하였다. 제안한 알고리즘은 복잡한 곱셈 연산을 필요로 하지 않으므로 하드웨어 구현시 보다 쉽게 구현 가능한 특징이 있다. 1개의 덧셈/뺄셈기와 2개의 덧셈기로 구성된 단위 뉴런은 형대가 단순하면서 반복적이므로 하나의 FPGA위에서도 다수의 뉴런을 구현 할 수 있으며 비교적 소수의 제어 신호로서 이들을 모두 제어 가능할 수 있도록 설계하였다. 실험결과 각 구성부분은 모두 이상 없이 올바로 동작하였으며 각 부분이 모두 종합된 전체 시스템도 이상 없이 동작함을 알 수 있었다.

  • PDF

The Effectiveness of High-level Text Features in SOM-based Web Image Clustering (SOM 기반 웹 이미지 분류에서 고수준 텍스트 특징들의 효과)

  • Cho Soo-Sun
    • The KIPS Transactions:PartB
    • /
    • v.13B no.2 s.105
    • /
    • pp.121-126
    • /
    • 2006
  • In this paper, we propose an approach to increase the power of clustering Web images by using high-level semantic features from text information relevant to Web images as well as low-level visual features of image itself. These high-level text features can be obtained from image URLs and file names, page titles, hyperlinks, and surrounding text. As a clustering engine, self-organizing map (SOM) proposed by Kohonen is used. In the SOM-based clustering using high-level text features and low-level visual features, the 200 images from 10 categories are divided in some suitable clusters effectively. For the evaluation of clustering powers, we propose simple but novel measures indicating the degrees of scattering images from the same category, and degrees of accumulation of the same category images. From the experiment results, we find that the high-level text features are more useful in SOM-based Web image clustering.

A Study on an Image Classifier using Multi-Neural Networks (다중 신경망을 이용한 영상 분류기에 관한 연구)

  • Park, Soo-Bong;Park, Jong-An
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.13-21
    • /
    • 1995
  • In this paper, we improve an image classifier algorithm based on neural network learning. It consists of two steps. The first is input pattern generation and the second, the global neural network implementation using an improved back-propagation algorithm. The feature vector for pattern recognition consists of the codebook data obtained from self-organization feature map learning. It decreases the input neuron number as well as the computational cost. The global neural network algorithm which is used in classifier inserts a control part and an address memory part to the back-propagation algorithm to control weights and unit-offsets. The simulation results show that it does not fall into the local minima and can implement easily the large-scale neural network. And it decreases largely the learning time.

  • PDF

Feature Extraction based FE-SONN for Signature Verification (서명 검증을 위한 특정 기반의 FE-SONN)

  • Koo Gun-Seo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.6 s.38
    • /
    • pp.93-102
    • /
    • 2005
  • This paper proposes an approach to verify signature using autonomous self-organized Neural Network Model , fused with fuzzy membership equation of fuzzy c-means algorithm, based on the features of the signature. To overcome limitations of the functional approach and Parametric approach among the conventional on-line signature recognition approaches, this Paper presents novel autonomous signature classification approach based on clustering features. Thirty-six globa1 features and twelve local features were defined, so that a signature verifying system with FE-SONN that learns them was implemented. It was experimented for total 713 signatures that are composed of 155 original signatures and 180 forged signatures yet 378 original signatures written by oneself. The success rate of this test is more than 97.67$\%$ But, a few forged signatures that could not be detected by human eyes could not be done by the system either.

  • PDF

Homogeneous Regions Classification and Regional Differentiation of Snowfall (적설의 동질지역 구분과 지역 차등화)

  • KIM, Hyun-Uk;SHIM, Jae-Kwan;CHO, Byung-Choel
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.20 no.3
    • /
    • pp.42-51
    • /
    • 2017
  • Snowfall is an important natural hazard in Korea. In recent years, the socioeconomic importance of impact-based forecasts of meteorological phenomena have been highlighted. To further develop forecasts, we first need to analyze the climatic characteristics of each region. In this study, homogeneous regions for snowfall analysis were classified using a self-organizing map for impact-based forecast and warning services. Homogeneous regions of snowfall were analyzed into seven clusters and the characteristics of each group were investigated using snowfall, observation days, and maximum snowfall. Daegwallyeong, Gangneung-si, and Jeongeup-si were classified as areas with high snowfall and Gyeongsangdo was classified as an area with low snowfall. Comparison with previous studies showed that representative areas were well distinguished, but snowfall characteristics were found to be different. The results of this study are of relevance to future policy decisions that use impact-based forecasting in each region.

Development of Market Growth Pattern Map Based on Growth Model and Self-organizing Map Algorithm: Focusing on ICT products (자기조직화 지도를 활용한 성장모형 기반의 시장 성장패턴 지도 구축: ICT제품을 중심으로)

  • Park, Do-Hyung;Chung, Jaekwon;Chung, Yeo Jin;Lee, Dongwon
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.4
    • /
    • pp.1-23
    • /
    • 2014
  • Market forecasting aims to estimate the sales volume of a product or service that is sold to consumers for a specific selling period. From the perspective of the enterprise, accurate market forecasting assists in determining the timing of new product introduction, product design, and establishing production plans and marketing strategies that enable a more efficient decision-making process. Moreover, accurate market forecasting enables governments to efficiently establish a national budget organization. This study aims to generate a market growth curve for ICT (information and communication technology) goods using past time series data; categorize products showing similar growth patterns; understand markets in the industry; and forecast the future outlook of such products. This study suggests the useful and meaningful process (or methodology) to identify the market growth pattern with quantitative growth model and data mining algorithm. The study employs the following methodology. At the first stage, past time series data are collected based on the target products or services of categorized industry. The data, such as the volume of sales and domestic consumption for a specific product or service, are collected from the relevant government ministry, the National Statistical Office, and other relevant government organizations. For collected data that may not be analyzed due to the lack of past data and the alteration of code names, data pre-processing work should be performed. At the second stage of this process, an optimal model for market forecasting should be selected. This model can be varied on the basis of the characteristics of each categorized industry. As this study is focused on the ICT industry, which has more frequent new technology appearances resulting in changes of the market structure, Logistic model, Gompertz model, and Bass model are selected. A hybrid model that combines different models can also be considered. The hybrid model considered for use in this study analyzes the size of the market potential through the Logistic and Gompertz models, and then the figures are used for the Bass model. The third stage of this process is to evaluate which model most accurately explains the data. In order to do this, the parameter should be estimated on the basis of the collected past time series data to generate the models' predictive value and calculate the root-mean squared error (RMSE). The model that shows the lowest average RMSE value for every product type is considered as the best model. At the fourth stage of this process, based on the estimated parameter value generated by the best model, a market growth pattern map is constructed with self-organizing map algorithm. A self-organizing map is learning with market pattern parameters for all products or services as input data, and the products or services are organized into an $N{\times}N$ map. The number of clusters increase from 2 to M, depending on the characteristics of the nodes on the map. The clusters are divided into zones, and the clusters with the ability to provide the most meaningful explanation are selected. Based on the final selection of clusters, the boundaries between the nodes are selected and, ultimately, the market growth pattern map is completed. The last step is to determine the final characteristics of the clusters as well as the market growth curve. The average of the market growth pattern parameters in the clusters is taken to be a representative figure. Using this figure, a growth curve is drawn for each cluster, and their characteristics are analyzed. Also, taking into consideration the product types in each cluster, their characteristics can be qualitatively generated. We expect that the process and system that this paper suggests can be used as a tool for forecasting demand in the ICT and other industries.

Automatic Recognition in the Level of Arousal using SOM (SOM 이용한 각성수준의 자동인식)

  • Jeong, Chan-Soon;Ham, Jun-Seok;Ko, Il-Ju
    • Science of Emotion and Sensibility
    • /
    • v.14 no.2
    • /
    • pp.197-206
    • /
    • 2011
  • The purpose of the study was to suggest automatic recognition of the subject's level of arousal into high arousal and low arousal with neural network SOM learning. The automatic recognition in the level of arousal is composed of three stages. First, it is a stage of ECG measurement and analysis. It measures the subject playing a shooting game with ECG and extracts characteristics for SOM learning. Second, it is a stage of SOM learning. It learns input vectors extracting characteristics. Finally, it is a stage of arousal recognition which recognize the subject's level of arousal when new vectors are input after SOM learning is completed. The study expresses recognition results in the level of arousal and the level of arousal in numerical value and graph when SOM learning results in the level of arousal and new vectors are input. Finally, SOM evaluation was analyzed average 86% by comparing emotion evaluation results of the existing research with automatic recognition results of SOM in order. The study could experience automatic recognition with other levels of arousal by each subject with SOM.

  • PDF

Research On Technical Writing Educational Methods Based On Complex Learning Systems (학습복잡계 기반의 공학적 글쓰기 교수 방법 연구)

  • Kim, Hae-Kyung;Kim, Cha-Jong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.7
    • /
    • pp.1521-1528
    • /
    • 2010
  • This paper examines technical writing and teaching methods based on the perspectives of the complex learning system theory. So, the paper first discusses the constituent elements and characteristics of the complex learning system theory and continues to examine the potential of applying the complex learning system theory to new teaching methods. As a result, not only did the research expand the approach methods of providing technical writing education but also confirmed the potential of actual implementation. Such results will provide a leeway to start applying new teaching methods for technical writing education. Furthermore, the paper proposes more detailed case studies related to this topic as well as development of this research to produce textbooks and other higher level researches.

Identification of shear layer at river confluence using (RGB) aerial imagery (RGB 항공 영상을 이용한 하천 합류부 전단층 추출법)

  • Noh, Hyoseob;Park, Yong Sung
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.8
    • /
    • pp.553-566
    • /
    • 2021
  • River confluence is often characterized by shear layer and the associated strong mixing. In natural rivers, the main channel and its tributary can be separated by the shear layer using contrasting colors. The shear layer can be easily observed using aerial images from satellite or unmanned aerial vehicles. This study proposes a low-cost identification method extracting geographic features of the shear layer using RGB aerial image. The method consists of three stages. At first, in order to identify the shear layer, it performs image segmentation using a Gaussian mixture model and extracts the water bodies of the main channel and tributary. Next, the self-organizing map simplifies the flow line of the water bodies into the 1-dimensional curve grid. After that, the curvilinear coordinate transformation is performed using the water body pixels and the curve grid. As a result, the shear layer identification method was successfully applied to the confluence between Nakdong River and Nam River to extract geometric shear layer features (confluence angle, upstream- and downstream- channel widths, shear layer length, maximum shear layer thickness).

A Study on Face Recognition Using Diretional Face Shape and SOFM (방향성 얼굴형상과 SOFM을 이용한 얼굴 인식에 관한 연구)

  • Kim, Seung-Jae;Lee, Jung-Jae
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.6
    • /
    • pp.109-116
    • /
    • 2019
  • This study proposed a robust detection algorithm. It detects face more stably with respect to changes in light and rotation for the identification of a face shape. Also it satisfies both efficiency of calculation and the function of detection. The algorithm proposed segmented the face area through pre-processing using a face shape as input information in an environment with a single camera and then identified the shape using a Self Organized Feature Map(SOFM). However, as it is not easy to exactly recognize a face area which is sensitive to light, it has a large degree of freedom, and there is a large error bound, to enhance the identification rate, rotation information on the face shape was made into a database and then a principal component analysis was conducted. Also, as there were fewer calculations due to the fewer dimensions, the time for real-time identification could be decreased.