• Title/Summary/Keyword: 자기회귀 모델

Search Result 144, Processing Time 0.026 seconds

Korean-English Non-Autoregressive Neural Machine Translation using Word Alignment (단어 정렬을 이용한 한국어-영어 비자기회귀 신경망 기계 번역)

  • Jung, Young-Jun;Lee, Chang-Ki
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.629-632
    • /
    • 2021
  • 기계 번역(machine translation)은 자연 언어로 된 텍스트를 다른 언어로 자동 번역 하는 기술로, 최근에는 주로 신경망 기계 번역(Neural Machine Translation) 모델에 대한 연구가 진행되었다. 신경망 기계 번역은 일반적으로 자기회귀(autoregressive) 모델을 이용하며 기계 번역에서 좋은 성능을 보이지만, 병렬화할 수 없어 디코딩 속도가 느린 문제가 있다. 비자기회귀(non-autoregressive) 모델은 단어를 독립적으로 생성하며 병렬 계산이 가능해 자기회귀 모델에 비해 디코딩 속도가 상당히 빠른 장점이 있지만, 멀티모달리티(multimodality) 문제가 발생할 수 있다. 본 논문에서는 단어 정렬(word alignment)을 이용한 비자기회귀 신경망 기계 번역 모델을 제안하고, 제안한 모델을 한국어-영어 기계 번역에 적용하여 단어 정렬 정보가 어순이 다른 언어 간의 번역 성능 개선과 멀티모달리티 문제를 완화하는 데 도움이 됨을 보인다.

  • PDF

Damage Monitoring in Foundation-Structure Interface of Harbor Caisson Using Vibration-based Autoregressive Model (진동기반 자기회귀모델을 통한 항만케이슨 지반-구조 경계부의 손상 모니터링)

  • Lee, So-Ra;Lee, So-Young;Kim, Jeong-Tae;Park, Woo-Sun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.1
    • /
    • pp.18-25
    • /
    • 2011
  • This study presents the damage monitoring method in foundation-structure interface of harbor caisson using vibration-based autoregressive (AR) model. In order to achieve the objective, the following approaches are implemented. Firstly, vibration-based AR model is selected to monitor the damage in foundation-structure interface of caisson structure. Secondly, finite element analysis on a caisson structure model is implemented to evaluate the vibration-based damage monitoring method. Finally, vibration test on a caisson structure model is performed to evaluate applicability of vibration-based AR model method for foundation-structure interface of caisson structure.

Estimation Of System Parameters With Arma Model (자기회귀-이중평균모델에 의한 시스템 파라미터 추정)

  • Hwang, Won-Geol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.8 no.4
    • /
    • pp.76-83
    • /
    • 1991
  • 자기회귀-이동평균모델에 의하여 시스템의 파라미터를 추정할 수 있는 벡터채널 원형 격자 필터(vector channel circular lattice filter)의 알고리즘을 제시하였다. 이 알고리즘은 스칼라 연산만으로 이루어져 계산이 간단한 장점이 있다. 3자유도 시스템의 시뮬레이션 결과로부터 격자 필터의 성능을 검증하였으며, 1자유도 팔의 고유진동수와 감쇄비를 추정하였다.

  • PDF

The Reciprocal Effects of Deviant Self-Concept and Delinquent Behaviors Revisited: A Latent State-Trait Autoregressive Modeling Approach (청소년 비행과 일탈적 자아개념의 상호적 인과관계: 잠재 상태-특성 자기회귀 모델을 통한 재검증)

  • Eunju Lee;Ick-Joong Chung
    • Korean Journal of Culture and Social Issue
    • /
    • v.16 no.4
    • /
    • pp.447-468
    • /
    • 2010
  • The purpose of this study was to attain a clearer understanding of the reciprocal effects of deviant self-concept and delinquent behaviors by applying a latent state-trait autoregressive modeling approach. Although traditional autoregressive cross-lagged (ARCL) modeling has been widely applied to test the longitudinal reciprocal relationship between the two constructs, it could produce misspecified findings if there were trait-like processes involved in this relationship. The latent state-trait autoregressive(LST-AR) modeling was applied to control trait effects of deviant self-concept and to examine the reciprocal causal relations between the two constructs. Data were taken from a sample of 3,449 eighth graders who were followed annually for 5 years from the Korea Youth Panel Study. The combining LST-AR model with ARCL model substantiated the reciprocal effects of deviant self-concept and delinquent behaviors, even after the stable trait component of deviant self-concept was taken into account. The present findings shed lights on the reciprocal effects of behaviors (i.e., delinquency) and self concepts (i.e., deviant self-concept). Not only did behaviors change corresponding self-concept, but the ways adolescents perceived themselves influenced their behaviors.

  • PDF

1.5T 자기공명영상기기에서 수소 자기공명분광법을 이용한 모델용액 내 포도당의 정량분석 및 임상적용 가능성에 대한 연구

  • 이경희;이정희;조순구;김용성;김형진;서창해
    • Proceedings of the KSMRM Conference
    • /
    • 2001.11a
    • /
    • pp.173-173
    • /
    • 2001
  • 목적: 1.5T 생체용 자기공명영상기기를 이용한 수소자기공명분광법으로 용액 내 물질의 정량분석에 대한 가능성을 알아보고자 하였다. 대상 및 방법: 0.01%에서 50%까지의 여러 농도를 갖는 포도당+증류수 혼합액의 모델용액을 만들어 생체용 자기공명영상기기와 시험관 nuclear magnetic resonance (NMR) 분광기에서 각각 수소 자기공명분광법을 시행하여 스펙트럼을 얻었다. 또한 12명의 당뇨환자에서 방광내의 소변에 대해 생체용 자기공명영상기기에서 스펙트럼을 얻고 소변을 추출하여 시험관 NMR 분광기에서 수소자기공명분광법을 시행하였다 각각의 방법으로 얻은 스펙트럼 상에서 포도당 농도에 따른 포도당/물 피크의 면적 비의 변화를 구하였고, 통계처리는 상관분석과 단순선형회귀분석을 시행하였고 회귀식을 산출하였다. 또한 생체용 자기공명영상기기를 이용하여 얻은 결과가 객관적인지 알아보기 위해 시험관 NMR 분광기에서 얻은 결과와의 상관관계를 분석하였다.

  • PDF

A Spatial-Temporal Correlation Analysis of Housing Prices in Busan Using SpVAR and GSTAR (SpVAR(공간적 벡터자기회귀모델)과 GSTAR(일반화 시공간자기회귀모델)를 이용한 부산지역 주택가격의 시공간적 상관성 분석)

  • Kwon, Youngwoo;Choi, Yeol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.2
    • /
    • pp.245-256
    • /
    • 2024
  • Since 2020, quantitative easing and easy money policies have been implemented for the purpose of economic stimulus. As a result, real estate prices have skyrocketed. In this study, the relationship between sales and rental prices by housing type during the period of soaring real estate prices in Busan was analyzed spatio-temporally. Based on the actual transaction price data, housing type, transaction type, and monthly data of district units were constructed. Among the spatio-temporal analysis models, the SpVAR, which is used to understand the temporal and spatial effects of variables, and the GSTAR, which is used to understand the effects of each region on those variables, were used. As a result, the sales price of apartment had positive effect on the sale price of apartment, row house, and detached house in the surrounding area, including the target area. On the other hand, it was confirmed that demand was converted to apartment rental due to an increase in apartment sales prices, and the sale price fell again over time. The spatio-temporal spillover effect of apartments was positive, but the positive effect of row house and detached house were concentrated in the original downtown area.

Wave Height and Downtime Event Forecasting in Harbour with Complex Topography Using Auto-Regressive and Artificial Neural Networks Models (자기회귀 모델과 신경망 모델을 이용한 복잡한 지형 내 항만에서의 파고 및 하역중단 예측)

  • Yi, Jin-Hak;Ryu, Kyong-Ho;Baek, Won-Dae;Jeong, Weon-Mu
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.4
    • /
    • pp.180-188
    • /
    • 2017
  • Recently, as the strength of winds and waves increases due to the climate change, abnormal waves such as swells have been also increased, which results in the increase of downtime events of loading/unloading in a harbour. To reduce the downtime events, breakwaters were constructed in a harbour to improve the tranquility. However, it is also important and useful for efficient port operation by predicting accurately and also quickly the downtime events when the harbour operation is in a limiting condition. In this study, numerical simulations were carried out to calculate the wave conditions based on the forecasted wind data in offshore area/outside harbour and also the long-term observation was carried out to obtain the wave data in a harbour. A forecasting method was designed using an auto-regressive (AR) and artificial neural networks (ANN) models in order to establish the relationship between the wave conditions calculated by wave model (SWAN) in offshore area and observed ones in a harbour. To evaluate the applicability of the proposed method, this method was applied to predict wave heights in a harbour and to forecast the downtime events in Pohang New Harbour with highly complex topography were compared. From the verification study, it was observed that the ANN model was more accurate than the AR model.

경제구조(經濟構造)의 변동(變動)과 경제예측(經濟豫測) - 변동계수(變動係數)벡터 자기회귀(自己回歸)모델을 이용한 분석(分析) -

  • Sim, Sang-Dal
    • KDI Journal of Economic Policy
    • /
    • v.11 no.3
    • /
    • pp.39-59
    • /
    • 1989
  • 본고(本稿)는 Sims가 개발한 방법을 이용하여 우리나라와 같이 경제구조(經濟構造)가 급히 변하는 상황에서의 경제예측(經濟豫測)의 정확도(正確度)를 제고하고자 하는 시도의 일환이다. 본고(本稿)는 예측자의 사전신뢰(事前信賴)를 이용하여 계수의 값에 대하여 사전제약(事前制約)을 부과(賦課)하고 시간변동(時間變動)을 허용하는 변동계수(變動係數)벡타자귀(自歸)(TBVAR)모형(模型)의 추정방법뿐만 아니라 사전제약(事前制約)의 모수(母數)를 선택하는 방법과 오차(誤差)의 분산(分散)이 자기회귀(自己回歸)할 경우의 대처방법 등 예측(豫測)의 정확도(正確度)를 제고시키는 데 실제 사용되는 방법을 설명하고, 6변수모형(變數模型)을 이용하여 TBVAR 모델의 정확도(正確度)를 타(他) 모델과 비교한다. 정부건설(政府建設), 총통화(總通貨), 사채시장이자율(社債市場利子率), 민간건설(民間建設), 실질(實質)GNP 및 소비자(消費者) 물가지수(物價指數) 등 6변수(變數)에 대한 예측의 정확도를 "타일 U"값을 기준으로 비교할 때 TBVAR은 시간변동(時間變動)을 고려하지 않고 사전제약(事前制約)만 적용한 BVAR이나 사전제약(事前制約)도 적용하지 않은 VAR보다 대부분의 변수의 예측에 있어 더 정확하며 민간건설(民間建設)을 제외하고는 OLS보다 예측오차(豫測誤差)가 작게 나타난다.

  • PDF

An Analysis of Dynamic Cutting Force Model for Face Milling Using Modified Autoregressive Vector Model (자기회귀 벡터모델을 이용한 정면밀링의 동절삭력 모델해석)

  • 백대균;김정현;김희술
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.12
    • /
    • pp.2949-2961
    • /
    • 1993
  • Dynamic cutting process can be represented by a closed-loop0 system consisted of machine tool structure and pure cutting process. On this paper, cutting system is modeled as a six degrees of freedom system using MARV(Modified Autoregressive Vector) model in face milling, and the modeled dynamic cutting process is used to predict dynamic cutting force component. Based on the double modulation principle, a dynamic cutting force model is developed. From the simulated relative displacements between tool and workpiece the dynamic force domponents can be calculated, and the dynamic force can be obtained by superposition of the static force and dynamic force components. The simulated dynamic cutting forces have a good agreement with the measured cutting force.

A Study on the Selection Algorithm of AR model order for Spectral Analysis of Heart Rate Variability (심박변동의 스펙트럼해석을 위한 자기회귀 모델차수 선택 알고리즘에 관한 연구)

  • Kim, Nag-Hwan;Shin, Jae-Ho;Han, Young-Hwan;Lee, Eung-Huk;Min, Hong-Ki;Hong, Sung-Hong
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.38 no.6
    • /
    • pp.56-64
    • /
    • 2001
  • In this paper, we proposed the simple and selective method for the order of model that reflected the feature of the heart rate variability without the complicated calculation in the power spectral analysis of heart rate variability using autoregressive model. The power spectral analysis of short-term of heart rate variability using autoregressive have been problem to resolution of spectral estimates by the selective model order. As a result that the proposed method for the order comparative tested with the AIC and the fixed order method, the calculation process could become very simple and select the order which correspond with the feature of the time series. We verified it could removed the noisy power components by the fixed order.

  • PDF