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1. Introduction

Rocontly there have been facreasing

interests in adaplive identification and conirol
of flexible structures, Adaptive identification
is the basis for output prediction algorithms
that are used in adaptive conirol, The re-
cursive least-squares method is used widely
This

method, however, has one serious limitation

for adaptive parameter identification.

for identification of flexible structures . it is

based on a fixed-order model, Large flexible
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structures have many, theoretically infinitely

many. modes of vibration. of which different

EEPE T T . . o B
exnecited at different fHnes,

minnhers may he

Aleasi-squares lattice filter is an algorithm
for least-squares parameter cstimation that
1s recursive in both time and order, The order
recursive property allows the lattice filter to
identify the number of substantially excited
modes of a flexible structure as well as the
parameters of a digital input/output model,
The lattice filter is more efficient than the

standard least-squares algorithm for large



orders, and it is numerically stable. Lee, Morf
and Friedlander'" first derived the time update
equations for the lattice and studied its
applications in signal processing and control,
Montgomery and Sundararajan®™ used lattice
filters in adaptive idenlification and control of
a flexible beam, Jabbari and Gibson' "
presented adaptive parameter identification
results for a complex flexible structure with
many closely packed natural frequencies,
Pagano™ has found a one-to-one re-
lationship between multivariate autore-
gressions an scalar periodic autoregressions,
and proposed an estimation method for the
former model based on the latter which
involves smaller number of parameters, He
derived a set of fundamental Yule-Walker type
equations for estimating the parameters, Sakai
derived a Levinson-type algorithm for
solving the YW equations, and showed a cir-
cular lattice structure of the process, Sakai
et. al """

adaptive form for on line time and order re-

modified the algorithm to an

cursive computation by using the geometric
approach, Scalar periodic lattice filters consist
of calculations of scalar quantities for
analyzing a multivariale autoregressive
system, thus completely avoid matrix
manipulations accompanying the usual
multivariate processing methods,

For single-input single-output (SISO)
systems, the input is considered a separate
output and, using imbedding, a two-channel
lattice is implemented, The ARMA models of
SISO systems have many attractive
characteristics : The minimal order ARMA for
such systems has order n and is unique, and

the eigenvalues can be calculated easily.
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When there are multiple outputs for the
system, however, almost all of these desirable
properties disappear, The order of the ARMA
contains no information about the order of the
state space representation of the system.
Another problem is the calculation of the
that is,

extraneous eigenvalues is difficult,

system eigenvalues, identifying the
if not
impossible,

Vector channel lattice filter uses an input/
outputl representation of the form

Y +5Y (- A =W (1) (1)
where Y (t) is m X p matrix and A,'s are p X p
matrices, The W ( - ) is uncorretated with zero
This model has the same

mean matrix,

uniqueness and minimality properties, and
order determination and eigenvalue cal-
culations are performed similarly, Fitting

the model to a vector channel lattice is
accomplished in the following way, Lct there
The first

output

be moutputs and one input,
then,

channel of the measurement vector (y, (t) -

channel, will be the actual
v.(t) )T, The second channel will be the m-
vector (u(t) 0 -~ 0)7. The third channel is
0u(t) 0 0)7, and finally, the (,.,)channel
becomes (0 - O u(t) )T, We extend the scalar
periodic lattice filter to the vector channel
case.- and call it vector channel circular lattice
filter. Numerical examples are given to show
its performance to estimate the natural
and the

natural frequency and damping ratio of one

frequencies of a 3-mass system,

degree-of-freedom arm are estimated,

2. Vector Channel Circular Lattice Filter

We say that a process z(-) is a periodic



V' (t) =

5

autoregression of period p and order (n,,,n,
if for all integers t,

z() +Ealt, Pzt-)=v (), (2)
where v( -} is uncorrelated with zero mean
and E{v2(t)}=0*(t), n=n., o*{t)=0*(t+p)and
aft, j)=alt+p, j), We denote the
autocovariance of z(-) by R(s, t)=E{z(s)z
(t)}.

Let us consider the following m-variate p-

j:ly R o 79

channel nth order AR process

YO +EYE-5)A=W(), (3)
where Y (t) is mXp matrix and A;'s are pxp
W(-)

mean matrix and cov (w; (t))=W;, where W (t)=

matrices, is uncorrelated with zero

wl 3T We define Y(t) as
z, (1+p (t-1)) z, @+p (t-1)) -z, (p+p (t-1))
y)=| 20 t-1))z @rp-1)) -z (prp (t—1))

(WTw,T -

Zo (1+p (-1)) z. 2+p (t-1)) -z (p*p (t-1))
(4)

Then, since z.'s have the same coefficients,

for i=1, ---, m,
2} (5), (6), ()
Thus we get

Y () L+Y (t-1) A, +-+Y (t-n) An’= V' (1),
where

(9~ (11

(8)

v, (I+p{t-1)) v, @+p(t-1)) v (p+p(t-1))
v, (1+p (t-1)) v, @+p{t-1)) v (p*D (t-1))

Va(I+p(t-1))  va(@+pEt-1))--va(p* D(t-1))
(12)
Comparing equation (8) with equation (3), it
follows that
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A,=A/L! =1, n
W)=V (1)L, t=0, =*1 (13)
W;=(L")TD,L =L
with
L= (j, j-k), i>k
a(j,0=1 and a(j, k)=0 for k<0
A '=a(j,pv*), r=lL -1 (14)

Di=diag (0.*(1), -+, 0.* (p))
This implies that, if Y(-) and z:(-)are
related by

v (B)=z: (j+p (t-1)), i=1, -, mj=1, -, p (15)
then Y(-) is an AR process of order n with
positive definite W,, i=1, -, m, if, and only
if, z:;(-) is a periodic autoregression of period
p and order (n,, -+, n,) with positive a; (1),--,0:(p)
and n= &% {{n,-3)/p)+1, where (x)=k for
ksx<k+1. Note that L matrix is a unit upper
triangular matrix, and inversion of L is quite
easy,

Suppose a set of data {Y(1), -, Y(N)}is
available, Then we can form a data set
{z:(D). -, ze(N,) ),
the following equations,

i=1, ---, m, and it satisfies

M+ alt, zit-=v. (1), i=l, -~ m (16)
Multiplying both sides by z; (t-q) and taking
expected values yields,

Efz () z (t-0) )+ E=E(alt )z -z t-))
=E{vi()zi (t-q)}. (17
This leads to the following modified Yule-
Walker equations for a(k, j),

R (k k-q)+£ a(k )R: (k=j, k-q) =8..0:" (k)

k=1, -, p, i=l, -, m,q=0.
(18)

Adding the above m equations results in

ZR. (k. k-a)+E o (k, ) SR (e, kmq) =80 ?
®, k=1, p, fa20. (19

When k-1 becomes 0, from the cyclic



property, the subscript k-1 must be replaced
by p

Define the qth order jth channel forward and
backward linear prediction errors for ith
measurement by
4 (20), 2D
for i=1. -, m, j=1,

coefficients a (j, ¢, r), 5,

,p. The predictor
a1,

determined by minimizing

-, q, are
h[E (1, j*pk. )]

and ¥ Eln”(, j*pk. @) J with respect to « (], q.
r), A(j, a,r), respectively. That is,
A (22) (23)
follow where
=01 alk, j, 1) alk, j )7, (24)
Biy=lsk j 3 - Ak g 1) 1T, (25)
and the (s, t) element of R (k, j)is T R.(k-s+1, k

“th1),

The order update recursions for €(, j, q+1),

1<s, t<j+l,

7(i, j, a+1) can be obtained in the same way
as in (12]. In our case it becomes

er(i, j, a*l)=er (i, j, @) +ar (j, a+1, ¢+l nr

4" @ (26)
nr(i, j,ar)=nr(, J, @) + 50 (, a+1, g+1) &7
4, q) (27)

where the subscript T denotes the value

evaluated at time T and

4 (28), (29)
Sitnce
o' (a)=y Elef (i j, )], (30)
v (-1, @)= E(n’ (i, j-1, a) ), (31)
Or(oa)=5Eler (. a)mp (i j-1, ) ), (32)
the timne update recursions, also, can be given
as follows
2 (33), (34), (35)

where 4 is the forgetting factor and 0 < u
2 1. The order update recursion for ¥z (j, g+J)
becomes

2 (36)
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The predictor coefficients a(k, j+1, ), Ak, j+1,1)
are calculated by
alk, j*+lr)=alk jr) +alk, j+ 1 j+ 1 a&-1, j

jti-r) (37)
Ak, i+l r)=5k-1 1)+ sk j+1, j+1D) ak, j+1,
jtl-r) (38)

for r=1, -, |

The necessary and sufficient condition for
the stability of a lattice filter is'”

0 < ar(jg*l, g+ Ara+l,a+) < 1 (39)
but it is nol necessary that {ar(j, q+1, g+1) |
< 1 and lpp(}, q+1, g+ | < L

3. Numerical Examples

The forced vibrations of a structure are
modeled as the response of a finite
dimensional linear system, The equations of
motion can be given as

Mx (1) +Dx () KX (1)=Eu(t)
where x(t) is the n-dimensional generalized
u(t) is the

dimensional generalized force vector,

(40)
displacement vector and m-
The
mass matrix M, the damping matrix D and the
stiffness matrix K are real symmetric nxn
matrices with M positive definite and D and K
nonnegative, In the structural identification
applications with which we are concerned, the
input u(t)is constant on sampling intervals,
and at the beginning of each sampling interval
we have m linear measurements of the state
vector,

A description of a 3-mass system will be

as in Fig, 1. Their state-space models are
given as
x (1) =Ax (1) + Bu(t) (41)
vi{t)=Cx (t) +w (1) (42)

where



O
1S
%

x(t)=[(x, % X, X, X5 X4J7 (43)
2 (44), (45) '
The numerical values for this study are chosen
as follows;
m,=m,=m,=1
ki=k.=k,=k,=100

c,=C,=cy=C,=0. 5

X X2
Ky k, k,
A A ]
my m;
=1 —
€

c,y ¢,

L.,

Fig. 1. A 3-mass system

This system has three natural frequencies at
7.654, 14, 142, and 18, 478 rad/sec. The mass
1 is excited by step input of 200 units, The
displacements of masses 1 and 2 are measured
every 0.05 seconds (20Hz), The meas-
urements have random noise which has

standard deviation of ow=0, 05. Fig. 2 shows
the estimation results of lattice filter for modal

frequencies from the measurement of

displacement of mass 1. It is observed that
the result converges to the three modal
frequencies very quickly. As shown in Fig.
3. measurement of displacement of mass 2
gives good estimate of the modal frequencies
except the 2nd flexible mode, It is not
observable, since mass 2 is located at a nodal
point of the 2nd flexible mode, The estimation
result of vector channel circular lattice filter
with measurements of masses 1 and 2 is given
in Fig. 4. It can estimate the three modal
frequencies including the 2nd mode which is
not observable with measurement of

displacement of mass 2.

Next, we generated a random signal for
measurement noise with standard deviation of
0,=0. 1, and estimated the modal frequencies,

Fig. 5, 6, and 7 show estimation results from

2 e
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Fig. 2. Estimation result from the displacement of mass |
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Fig. 3. Estimation result from the displacemen! of mass 2
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Fig. 4. Estimation result from the displacement of
masses 1 and 2
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Fig. 5. Estimation result from the displacement of mass 1
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Fig. 6. Estimation result from the displacement of mass 2
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Fig. 7. Estimation result from the displacement of
masses 1 and 2

the measurement of displacement of mass 1,
mass 2, and masses 1 and 2, respectively.
They show similar characteristics with the
corresponding results obtained before, with
a little slower convergence. But it does not

give any problems in practical applications,
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Fig. 8. Control signal of one degree-of-fredom arm
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Fig. 9. Output angle of one degree—of-freedom arm

4. Experiments

The experimental one degree-of-freedom
arm uses a pneumatic cylinder to drive a ro-
tary joint via cables, A position encoder
measures the joint angle, and a differential
pressure transducer measures the pressure
difference betlween the two sides of the
cylinder, The equation of motion for the arm
is

16 +mgl cosf = Fr (46)
where ] is the moment of inertia of the arm
about the pivot, mgl cosé is the torque due
to gravity, F is the force in the cable, and

r is the moment arm. This is a nonlinear



equation, and it is linearized to implement a
control system. The the coefficients of the
linearized equation are either not known or
vary during the motion of the arm, It is
necessary to identify the system parameters
in order to effectively control the arm, The
control signal and the output angle of the arm
are measured every 0, 005 seconds, and are
shown in Fig. 8 and Fig. 9, respectively,
Identification results for the natural frequency
and the damping ratio are shown in Fig, 10
and Fig. 11. The natural frequency of the arm
is found to be about 7, 61 rad/sec at the ver-
tical position, and the lattice filter gives values
around 7. 76 rad/sec, Damping ratio is hard
to determine, and it is found to be between
0. 05 and 0. 19. The estimated result from the
lattice filter is around 0.1, which is quite

acceptable,
70,

60

50

40

30,

frequency (radsec)

20

time (seconds)
Fig.

0.8 [y oy s e e e =

10. Estimation result for natural frequency
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04

damping rata

L‘\(“’Y\M’wﬂ e A T S ey T ST
|

0} 1 2 3 4 5 3 7 YT
timz (seconds)
Fig.

11. Esiimation result for demping r:tio
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5. Conclusion

Vector channel circular lattice filter is
introduced, which consists of calculations of
scalar quantities only, Numerical examples of
estimating modal frequencies of 3-mass sys-
tem show its performance, It shows a good
performance for estimating the modal
frequencies in the presence of measurement
noise, Scalar circular lattice filter converges
quickly, and vector channel lattice filter
identifies modal frequencies even when some
of them is unobservable for one measurement,
Experimental results demonstrated the ability
of the lattice filter to identify the natural
frequency and the damping ratio of one degree

-of-freedom arm,
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