• Title/Summary/Keyword: 자기치유 모르타르

Search Result 32, Processing Time 0.024 seconds

Crack Self-Healing Performance According to Absorption Test of Fiber Reinforced Concrete (콘크리트의 흡수율에 따른 균열 자기치유 성능)

  • Woo, Hae Sik;Park, Byoung Sun;Yoo, Sung Won;Choi, Young Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.2
    • /
    • pp.122-129
    • /
    • 2019
  • Cracks in concrete structures are inevitable phenomena caused by shrinkage, hydration heat, and external loads. These cracks facilitate the penetration of external harmful ions into the concrete, which greatly reduces its durability. Recently, self-healing concrete has been actively studied. Also, self-healing fiber-reinforced concrete have been studied to control the crack in concrete and to maximize the shelf-healing capability. In this study, mortar specimens containing PVA fiber, fly ash and crystalline admixture were fabricated. The compressive and flexural strength were evaluated. Also, the self-healing performance was evaluated by the absorption test. From the results, it was confirmed that the amount of water absorbed by healing of the crack decreased as time increased. It was also found that PVA fiber is beneficial for the production of calcium carbonate, an additional healing product.

Mechanical Properties of Self-Healing Mortar Using Cementitious Material-Based Capsule (시멘트계 재료 기반 캡슐을 사용한 자기치유 모르타르의 역학 특성)

  • Lee, Jae-In;Im, Soo-Bin;Na, Bum-Su;Kim, Chae-Young;Yoon, Joo-Hoo;Choi, Se-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.149-150
    • /
    • 2023
  • Although concrete is a material widely used in the construction industry, it is very vulnerable to cracking and has a disadvantage in that durability deteriorates when cracks occur. When cracks occur, harmful factors are introduced through the micro-cracks of the structure, reducing durability. Therefore, in this study, as part of a study to alleviate the problems of maintenance and durability deterioration due to cracks in concrete structures, the mechanical properties of self-healing mortar according to the size of the capsule made of cement material were reviewed.

  • PDF

A Study on the Self-heaing Properties of Inorganic-organic Additives with Recycling Sodium Acetate (결정성 염을 포함한 유⋅무기계 자기치유 소재의 결정 생성 효과에 따른 치유 특성 연구)

  • Dong Cheol, Park;Hyuk, Kwon;Moo Yeon, Hwang;Tea Hyung, Kim;Kang Bum, Lee
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.4
    • /
    • pp.584-592
    • /
    • 2022
  • In this paper, a study was conducted to improve self-healing and strength properties using sodium acetate. The developed inorganic-organic self-healing materials and recycled sodium acetate were manufactured to evaluate self-healing and permeability reduction properties. As a result of the experiment with recycled sodium acetate, the compressive strength of the material prepared with anhydrous and trihydrate at a ratio of 7:4 was higher than that of the mixture using anhydrous. It was confirmed that the compressive strength was improved by 3~7 %. In addition, the maximum permeability reduction rate was 92.6 %, which satisfied the self-healing properties.

Self-Healing Characteristics of Mortar Blocks according to the Mixing Ratio of Self-Healing Capsules (자기치유용 캡슐 혼입율에 따른 모르타르 블록의 자기치유 특성)

  • Yoon, Joo-Ho;Kim, Chae-Young;Na, Bum-Su;Lee, Jae-In;Choi, Se-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.321-322
    • /
    • 2023
  • This study compared the compressive strength and healing strength to confirm the self-healing performance of mortar incorporating Bioinspired Self-healing Capsule (BSC) into cement composites as part of a study to mitigate the problem of durability deterioration due to cracks in concrete structures. As a result of the evaluation, it was found that the healing performance decreased as the mixing ratio of the BSC capsule increased.

  • PDF

Performance Evaluation Method of Self-Healing Concrete Using Gas Diffusion Experiment (기체확산 실험을 활용한 자기치유 콘크리트의 성능평가 방법)

  • Lee, Do-Keun;Shin, Kyung-Joon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.1
    • /
    • pp.143-151
    • /
    • 2020
  • Recently, research on self-healing concrete has been actively conducted, and various methods have been attempted for use in the maintenance of structures. However, contrary to the technical development of self-healing concrete, the method for evaluating the performance is insufficient. Although surface observation and permeability experiments are widely used to observe the healing of cracks, microscopic observation of surface may be insufficient to assess the overall performance. Also, permeation experiments should consider the losses caused by the dissolution of self-healed product and viscosity of water. Although a gas diffusion experiment have been proposed to overcome the shortcomings of these two test methods, verification has not been made on specimens with actual healing. Therefore, in this study, gas diffusion experiments were performed on the mortar specimens that had healed, and the adequacy of self-healing evaluation by the gas diffusion experiment was verified.

Visualization of Self-Healing Function of Protective Coating for Concrete (콘크리트 보호코팅재의 자기치유 기능의 시각화)

  • Kim, Dong-Min;Choi, Ju-Young;Jin, Seung-Won;Nam, Kyeong-Nam;Park, Hyeong-Joo;Chung, Chan-Moon
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.10
    • /
    • pp.87-93
    • /
    • 2019
  • Microcapsules were prepared by using a mixture of linseed oil and a small amount of fluorescent fluid as a core material. Self-healing protective coatings were prepared by applying coating formulations containing varying amounts of microcapsules on mortar surface. After scratch or crack was generated in the coating, when the damaged region was exposed to ultraviolet light (${\lambda}=365nm$), it was observed that fluorescence emission area increased with increasing microcapsule loading. In the cases of the self-healing coatings having 20wt% or more microcapsule loading, the damaged region was almost filled with the healing agent. In water sorptivity test, the self-healing coating having 20wt% or more microcapsule loading showed a healing efficiency of about 85%. The fluorescence emission from the damaged region was easily observed at a distance of 3 m. The self-healing protective coating is expected to be useful to confirm its self-healing function with the eye.

Investigation of Physical Properties and Self Healing of Hardener-Free Epoxy-Modified Mortars with GGBFS (고로슬래그미분말을 혼입한 경화제 무첨가 에폭시수지 모르타르의 물리적 성질 및 자기치유 검토)

  • Jo, Young-Kug;Kim, Wan-Ki
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.1
    • /
    • pp.80-87
    • /
    • 2020
  • The purpose of this study is to investigate the physical properties and self-healing effects of hardener-free epoxy-modified mortars(EMMs) using ground granulated blast furnace slag(GGBFS). The EMMs with GGBFS were prepared with various polymer-binder ratios and GGBFS contents, and tested for strengths, adhesion in tension, water permeation and self-healing effects. The conclusions obtained from the test results are summarized as follows. The compressive strength of the EMMs with GGBFS is reduced with increasing polymer-binder ratios because of reduction of the degree of hardening in the EMMs, and is somewhat inferior to that of unmodified mortars. In the flexural and tensile strengths, the flexural strength of the EMMs is almost constant with increasing polymer-binder ratios. However, the tensile strength of the EMMs is gradually increased with increasing polymer-binder ratios. Regardless of the GGBFS contents, the adhesion in tension of the EMMs increases sharply with increasing polymer-binder ratios. The water permeation of the EMMs is remarkably reduced with increasing polymer-binder ratios and GGBFS contents. The self-healing effect of the hardener-free EMMs with GGBFS is improved with increasing water immersion period at a GGBFS content of 20%.

Water Permeability Performance Evaluation of Mortar Containing Crack Self-healing Mineral Admixtures (균열 자기치유 재료 혼입 모르타르의 투수성능 평가)

  • Lee, Woong-Jong;Hwang, Ji-Soon;Ahn, Sang-Wook;Lee, Kwang-Myong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.4
    • /
    • pp.463-469
    • /
    • 2016
  • In this paper, compressive strength and water permeability performance for two types of crack self-healing materials such as SH-PO-0 composed of mineral admixtures(expansive agent, swelling material and crystal growth agent) and SH-PO-(5, 15, 30) blended with SH-PO-0 and phosphate additive(PO) dissolving easily calcium ion, were evaluated. The test results show that the water flow of SH-PO-0 decreased steeply at the early age although compressive strength decreased about 9% at 28 days compared with OPC. The higher PO replacement ratio is, the lower compressive strength and more improved water permeability performance is, and thus, based on such results, adequate PO replacement ratio is 15%. It is also found that the self-healing performance of SH-PO-15 was quite improved at the early ages and however, the performance of SH-PO-15 is similar to one of SH-PO-0 at long-term ages, and 28 days compressive strength of SH-PO-15 decreased about 8% compared with SH-PO-0. In addition, it is confirmed from the analysis of SEM-EDS that calcium ions of SH-PO-15 were crystallized more than those of SH-PO-0.

Experimental Study on the Manufacturing and Waterproofing Properties of Self-healing Concrete Waterproofing Agent Using Microcapsules (마이크로캡슐을 활용한 자기치유 구체방수제의 제조 및 방수특성에 관한 실험적 연구)

  • Yun-Wang Choi;Jae-Heun Lee;Neung-Won Yang
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.289-298
    • /
    • 2023
  • In this study, the development of a self-healing concrete waterproofing agent was examined, focusing on its manufacturing and waterproofing properties. The optimal ratio using microcapsules for the concrete waterproofing agent was determined through assessments of flow, compressive strength, and permeability conducted during the mortar stage. These findings aimed to provide fundamental data for evaluating the self-healing properties of the concrete waterproofing agent designed for use in concrete structures. The self-healing concrete waterproofing agent was comprised of three types of inorganic materials commonly used for repair purposes. From experimental results, a composition ratio with a high potassium silicate content, referred to as SIM-2, was found suitable. A surfactant mixing ratio of 0.03 % was identified to enhance the dispersibility of the concrete waterproofing agent, while a mixing ratio of 0.2 % distilled water was deemed suitable for viscosity adjustment. For the magnetic self-healing concrete waterproofing agent's healing agent, using microcapsules in the range of 0.5 % to 0.7 % met the KS F 4949 and KS F 4926 standards.

Self-Healing Investigation of Bisphenol F-Type Epoxy-Modified Mortars with Expansive Admixtures Under Outdoor Exposure Conditions (환경조건에 따른 팽창성 혼화재 및 비스페놀 F형 에폭시수지 병용 모르타르의 자기치유 검토)

  • Park, Seung-Min;Kim, Wan-Ki
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.22-23
    • /
    • 2017
  • The purpose of this study is to ascertain self-healing function on microcracks in bisphenol F-type epoxy-modified mortars using expansive admixtures. The specimens are prepared with various polymer-binder ratios of 0, 5, 10, 20%, expansive admixture contents of 0% and 10%, a sodium carbonate content of 0.25%, and subjected to exposure conditions of CR1, CR2, CR3 and CR4. The specimens are tested for self-healing effect, porosity and FE-SEM analysis. As a result, self-healing effects of bisphenol F-type EPMMs with expansive admixtures are visible in all of the outdoor exposure conditions. In particular, exposure conditions of CR3 and CR4 are most noticeable. And the porosity of EPMMs is reduced with an increase in the polymer-binder ratio, and is considerably smaller than that of unmodified mortar.

  • PDF