DOI QR코드

DOI QR Code

A Study on the Self-heaing Properties of Inorganic-organic Additives with Recycling Sodium Acetate

결정성 염을 포함한 유⋅무기계 자기치유 소재의 결정 생성 효과에 따른 치유 특성 연구

  • 박동철 ((주)위드엠텍 ) ;
  • 권혁 ((주)위드엠텍 기술연구소) ;
  • 황무연 ((주)위드엠텍 기술연구소) ;
  • 김태형 ((주)위드엠텍 기술연구소) ;
  • 이강범 ((주)위드엠텍 기술연구소)
  • Received : 2022.11.18
  • Accepted : 2022.12.07
  • Published : 2022.12.30

Abstract

In this paper, a study was conducted to improve self-healing and strength properties using sodium acetate. The developed inorganic-organic self-healing materials and recycled sodium acetate were manufactured to evaluate self-healing and permeability reduction properties. As a result of the experiment with recycled sodium acetate, the compressive strength of the material prepared with anhydrous and trihydrate at a ratio of 7:4 was higher than that of the mixture using anhydrous. It was confirmed that the compressive strength was improved by 3~7 %. In addition, the maximum permeability reduction rate was 92.6 %, which satisfied the self-healing properties.

본 논문에서는 구체방수 혼화재로 사용되는 아세트산나트륨을 활용하여 자기치유 성능 향상 및 강도 성능 개선을 위한 연구를 진행하였다. 선행연구로 개발된 유ㆍ무기계 자기치유 핵심소재와 재생 아세트산나트륨을 혼합 제조하여 자기치유 모르타르, 콘크리트의 기초성능 및 투수 저감 성능을 평가하였다. 재생 아세트산나트륨을 첨가 실험결과 무수화물 단독으로 사용한 배합에 비해 무수화물과 삼수화물을 7:4 비율로 혼합한 소재의 압축강도 개선 효과가 3~7 %로 확인되었다. 또한, 최대 투수감소율은 92.6 %로 자기치유 특성을 만족하는 결과를 확인하였다.

Keywords

Acknowledgement

본 연구는 국토교통부 건설기술연구사업의 연구비 지원(22SCIP-C159059-03)에 의해 수행되었습니다.

References

  1. Al-Kheetan, M.J., Rahman, M.M. (2019). Integration of anhydrous sodium acetate(ASAc) into concrete pavement for protection against harmful impact of deicing salt, JOM, 71(12), 4899-4909. https://doi.org/10.1007/s11837-019-03624-3
  2. Al-Otoom, A., Al-Khlaifa, A., Shawaqfeh, A. (2007). Crystallization technology for reducing water permeability into concrete, Industrial & Engineering Chemistry Research, 46(16), 5463-5467. https://doi.org/10.1021/ie070527l
  3. Cameron, T.S., Mannan, K.M., Rahman, M.O. (1976). The crystal structure of sodium acetate trihydrate, Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 32(1), 87-90. https://doi.org/10.1107/S0567740876002367
  4. Hsu, L.Y., Nordman, C.E. (1983). Structures of two forms of sodium acetate, Na+. C2H3O2-, Acta Crystallographica Section C: Crystal Structure Communications, 39(6), 690-694. https://doi.org/10.1107/S0108270183005946
  5. Kushartomo, W., Prabowo, A. (2019). The application of sodium acetate as concrete permeability-reducing admixtures, IOP conference series: Materials Science and Engineering, 508(1), 012009.
  6. Lv, Z., Chen, D. (2014). Overview of recent work on self-healing in cementitious materials, Materiales de Construccion, 64(316), e034-e034. https://doi.org/10.3989/mc.2014.05313
  7. Macanovskis, A., Krasnikovs, A., Spruge, I., Sahmenko, G., Lukasenko, R. (2016). Mechanical properties and self-healing effect of concrete containing capillary hydro insulation admixture, Rigas Tehniskas Universitates Zinatniskie Raksti, 18, 17.
  8. Park, D.C., Kwon, H., Lee, J.W., Hwang, M.Y., Kim, T.H. (2021). Performance evaluation of mortar containing mechanochemical treated self-healing admixtures, Journal of the Korean Recycled Construction Resources Institute, 9(3), 367-374 [in Korean].
  9. Roig-Flores, M., Pirritano, F., Serna, P., Ferrara, L. (2016). Effect of crystalline admixtures on the self-healing capability of early-age concrete studied by means of permeability and crack closing tests, Construction and Building Materials, 114, 447-457. https://doi.org/10.1016/j.conbuildmat.2016.03.196
  10. Sisomphon, K., Copuroglu, O., Koenders, E.A.B. (2012). Self-healing of surface cracks in mortars with expansive additive and crystalline additive, Cement and Concrete Composites, 34(4), 566-574. https://doi.org/10.1016/j.cemconcomp.2012.01.005
  11. Yang, W.H., Ryu, D.W., Kim, W.J., Park, D.C., Seo, C.H. (2013). An experimental study on early strength and drying shrinkage of high strength concrete using high volumes of ground granulated blast-furnace slag(GGBS), Journal of the Korea Institute of Building Construction, 13(4), 391-399 [in Korean]. https://doi.org/10.5345/JKIBC.2013.13.4.391