• Title/Summary/Keyword: 자기발열

Search Result 95, Processing Time 0.034 seconds

A Fundamental Study on the Correlationship between Hydration Heat and Autogenous Shrinkage of High Strength Concrete at an Early Age (초기재령 고강도콘크트의 수화발열과 자기수축 특성의 상관관계에 관한 기초적 연구)

  • Kim, Gyu-Yong;Lee, Eui-Bae;Koo, Kyung-Mo;Choi, Hyeong-Gil
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.5
    • /
    • pp.593-600
    • /
    • 2008
  • In this study, to analyze the correlation between hydration heat and autogenous shrinkage of high strength concrete at an early age, hydration heating velocity and autogenous shrinking velocity as quantitative coefficients which represent the main properties of hydration heat and autogenous shrinkage were proposed. Two coefficients were calculated by statistical analysis and were equal with the regression coefficient. The complemented semi-adiabatic temperature rise test as test method to evaluate the hydration heat and autogenous shrinkage of concrete were proposed. In results of proposed test and analysis method, it was possible that early age properties of hydration heat and autogenous shrinkage of concrete were expressed numerically, and autogenous shrinkage was represented by equation with coefficients of hydration heat.

Micro-Structural Study of Al/Ni Nano-Multilayer Foils by Intermixing Criteria (혼합 기준을 달리한 Al/Ni 나노 멀티 포일의 미세구조에 대한 연구)

  • Jo, Yong-Gi;Yu, Gwang-Chun;Lee, Won-Beom;Yu, Se-Hun;Jeong, Dong-Geun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.374-375
    • /
    • 2013
  • Al/Ni 나노 멀티 포일은 상온에서 외부 방전 및 촉발에 따라 급속한 자기 발열 반응이 일어나는 특성을 보여, 외부 촉발을 통해 상온에서 온도를 높일 수 없는 접합이나 마이크로 수준의 미세 접합이 가능한 접합재료로서 활용이 상당히 기대되는 재료이다. 본 연구에서는 스퍼터링법을 이용하여 한 층이 20 nm 이하에서 Al과 Ni의 혼합 기준을 달리한 Al/Ni 나노 멀티 900층을 제조와 제조된 반응성 포일이 자기 발열 반응에 따른 미세구조에 대해 조사하였다. 박막의 증착은 3~10 mTorr의 공정압력 으로 Al 타겟 전류 1.7 A, Ni 타겟 전류 1.4 A로 하여 증착시간을 조절하여 제조하였다. SEM과 EDX를 통하여 Al/Ni 나노 멀티 포일의 성장구조와 각 원소의 함량을 조사하였다. XRD 미세결정구조 분석은 제조된 반응성 포일과 외부 촉발시킨 후 자기 발열 반응에 의해 형성되는 혼합 상에 대한 조사를 실시하였다. 혼합기준이 1:1의 Al/Ni 나노 멀티 포일에서 약 $980^{\circ}C$의 발열이 발생하는 것을 Pyrometer를 통해 측정하였으며, 자기 발열 반응 후의 혼합 상은 AlNi이 형성되었다. Ni rich 포일에서는 약 $730^{\circ}C$의 발열이 발생하였고, 혼합상으로 주로 AlNi이 형성되었고 Al3Ni2도 나타났으며, 반응에 참여하지 못한 Ni이 남아있는 것을 관찰하였다. Al rich 포일에서는 약 $720^{\circ}C$의 발열과 함께 AlNi, $AlNi_3$이 형성되었고 반응에 참여하지 못한 Al이 미세하게 나타났다.

  • PDF

Effects of Specimen Shape on Hydration Heat and Autogenous shrinkage at an early (시험체 형상에 따른 고강도 콘크리트의 수화열 및 자기수축 초기특성 분석)

  • Lee, Eui-Bae;Koo, Kyung-Mo;Kim, Young-Sun;Kim, Young-Duck;Kim, Gyu-Yong;Kim, Moo-Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.915-918
    • /
    • 2008
  • Hydration heat and autogenous shrinkage are generated essentially by the same hydration. Many researchers have studied the close relationship between hydration temperature and autogenous shrinkage but hardly any research has been undertaken to explain the specific numerical relation. In this study, early age properties of hydration heat and autogenous shrinkage of specimen whose section size was changed were analyzed, and relationship between hydration heat and autogenous shrinkage was investigated. In the results of the study, inner temperature and autogenous shrinkage increased as the section size increased. And rise and rise ratio of hydration temperature and autogenous shrinkage in hydration heating section and autogenous shrinking section are increased too. Temperature rise and autogenous shrinkage rise increased respectively, as hydration heating velocity and autogenous shrinking velocity increased. And autogenous shrinkage rise and autogenous shrinking velocity increased as hydration heating velocity increased.

  • PDF

The statistical method for quantitative analysis of hydration heat and autogenous shrinkage of concrete (콘크리트 수화발열 및 자기수축 특성의 정량적 분석을 위한 통계적 방법)

  • Lee, Eui-Bae;Lee, Hyung-Jun;Koo, Kyung-Mo;Na, Chul-Sung;Kim, Gyu-Yong;Kim, Moo-Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.645-648
    • /
    • 2008
  • In this study, to evaluate the correlation between hydration heat and autogenous shrinkage of high strength concrete in early age, statistical method present numerically hydration heat and autogenous shrinkage was studied. First of all, hydration heating velocity and autogenous shrinking velocity as quantitative coefficients which represent the main properties of hydration heat and autogenous shrinkage were proposed. Two coefficients were calculated by statistical analysis and were equal with the regression coefficient. To verify the validity of the proposed statistical analysis method, data of hydration heat and autogenous shrinkage gathered by a real experiment were analyzed by it. In results, properties of hydration heat and autogenous shrinkage of high strength concrete in early age were analyzed quantitatively. Also evaluation and comparison of the correlation between hydration heat and autogenous shrinkage with numerical value were possible.

  • PDF

Properties of Autogenous Shrinkage according to Hydration Heat Velocity of High Strength Concrete Considering Mass Member (매스부재를 고려한 고강도콘크리트의 수화발열상승속도 조절에 따른 자기수축 특성)

  • Koo, Kyung-Mo;Kim, Gyu-Yong;Hong, Sung-Hyun;Nam, Jeong-Soo;Shin, Kyoung-Su;Khil, Bae-Su
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.4
    • /
    • pp.369-376
    • /
    • 2012
  • In this study, to reduce the hydration heat velocity (HHV) of high-strength mass concrete at early ages, phase change materials (PCM) that could absorb hydration heat were applied, and the changes in autogenous shrinkage were investigated, as well as the relationship between the hydration temperature and autogenous shrinkage. The acceleration of the cement hydration process by the PCM leads to an early setting and a higher development of the compressive strength and elastic modulus of concrete at very early ages. The function of PCM could be worked below the original melting point due to the eutectic effect, while the hydration temperature and HHV of high-strength mass concrete can be decreased through the use of the PCM. A close relationship was found between the hydration temperature and autogenous shrinkage: the higher the HHV, the greater the ultimate autogenous shrinkage.

Properties of Hydration Heat and Autogenous Shrinkage of High-Strength Mass Concrete with Latent Heat Material (잠열재를 사용한 고강도 매스 콘크리트의 수화열 및 자기수축 특성)

  • Lee, Eui-Bae;Koo, Kyung-Mo;Nam, Jeong-Soo;Kim, Young-Sun;Kim, Young-Duck;Kim, Gyu-Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.315-316
    • /
    • 2009
  • In this study, latent heat material was used to reduce hydration heating velocity of high-strength mass concrete. And the properties of hydration heat and autogenous shrinkage, and the relationship between hydration heat and autogenous shrinkage of high-strength mass concrete were numerically investigated.

  • PDF

The Analysis of Early Age Properties of Hydration Heat and Autogenous Shrinkage according to Specimen Size and Retardation of Hydration (시험체 크기 및 수화지연 효과에 따른 초기재령 수화발열 및 자기수축 특성 분석)

  • Kim, Gyu-Yong;Koo, Kyung-Mo;Lee, Hyoung-Jun;Lee, Eui-Bae
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.4
    • /
    • pp.481-488
    • /
    • 2009
  • It has been reported that the magnitude and the development rate of autogenous shrinkage of cement paste, mortar and concrete were affected by history and magnitude of inner temperature at an early age. But it was not enough to explain the relation between hydration heat and autogenous shrinkage at an early age, because there was no certain analysis on histories of hydration heat and autogenous shrinkage in previous studies. In our prior study, to understand the relationship between hydration heat and autogenous shrinkage of concrete at an early age, the analysis method for histories of hydration heat and autogenous shrinkage was suggested. Based on this method, early age properties of hydration heat and autogenous shrinkage of high strength concrete with different sizes and hydration retardation were investigated in this study. As a result of the study, properties of hydration temperature and autogenous shrinkage were different according to specimen size and hydration retardation. However, there was a close relationship between hydration temperature and autogenous shrinkage at an early age, especially between HHV and ASV as linear slopes of the sections where hydration temperature and autogenous shrinkage increase rapidly; the higher HHV, the higher ASV and the greater ultimate autogenous shrinkage. And it was found that, among the setting time, bend point and temperature increasing point, they were close relationship each other on cement hydration process.

A Statistical Analysis on Hydration Heat and Autogenous Shrinkage of High Strength Concrete in Early Age Using Blast Furnace Slag (고로슬래그 미분말을 다량 사용한 고강도 콘크리트의 초기 수화발열 및 자기수축 특성에 관한 통계적 분석)

  • Koo, Kyung-Mo;Nam, Jeong-Soo;Lee, Eui-Bae;Kim, Young-Duck;Kim, Gyu-Yong;Kim, Moo-Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.657-660
    • /
    • 2008
  • In this study, quantitative analysis on effect of hydration heat and autogenous shrinkage of concrete using BFS was studied. Especially, it analyze section data statistically which hydration heat and autogenous shrinkage rise, and it appeared the correlation of hydration heat and autogenous shrinkage as well as quantitative coefficients of the main properties. As a result, the section which hydration heat and autogenous shrinkage of BFS-50 rise rapidly is delayed than OPC, but the slope of hydration heat and autogenous shrinkage in that section appeared similar shape in each mixing. Finally it will be possible to control the amount of autogenous shrinkage because hydration heating velocity and autogenous shrinking velocity are decreased by using BFS.

  • PDF

Hydration Heat Properties of High Flowing Self-Compacting Concrete with Normal Strength (보통강도 고유동 자기충전 콘크리트의 수화발열 특성)

  • Choi, Yun-Wang;Kim, Byoung-Kwon;Lee, Jae-Nam;Ryu, Deug-Hyun;Song, Yong-Kyu;Jung, Woo-Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.497-500
    • /
    • 2008
  • This research carries out experiments for hydration exothermic rate and adiabatic temperature rise of concrete to examine the characteristics of the hydration heat of high flowing self-compacting concrete with a normal strength. As a result of the hydration exothermic rate experiment, the high flowing self-compacting concrete that used Lime stone powder and fly ash as polymers shows that its hydration heat amount reduces due to the reduction of unit cement. The result measured the adiabatic temperature rise of concrete presents that high flowing self-compacting concrete having lots of binder contents has a good performance in temperature reduction due to the effect of polymer and that triple adding high flowing self-compacting concrete has a similar temperature rise speed with conventional concrete. As a result of the research, high flowing self-compacting concrete shows a better temperature reduction performance for the binder content per unit than conventional concrete. In addition, it is judged that triple adding high flowing self-compacting concrete with a specified concrete strength 30 MPa is more beneficial in temperature reduction and early hydration heat than double adding high flowing self-compacting concrete.

  • PDF