• Title/Summary/Keyword: 입자 강화 복합재료

Search Result 148, Processing Time 0.023 seconds

Characterization of TiB2 Particle Reinforced Cu Matrix Composites Processed by Turbulent In-situ Mixing (난류용탕 in-situ 합성법에 의해 제조된 TiB2 입자강화 Cu 기지 복합재료의 특성)

  • Kim J. H.;Yun J. H.;Lee G. G.;Choi I. D.;Park Y. H.;Cho K. M.;Park I. M.
    • Korean Journal of Materials Research
    • /
    • v.15 no.12
    • /
    • pp.809-813
    • /
    • 2005
  • A copper matrix composite reinforced by turbulent in-situ $TiB_2$ nanoparticle was Prepared by reactions of boron ana titanium. The microstructure, mechanical and electrical properties of the as-drawn composites were investigated. The results showed that the formed $TiB_2$ particles, which had a size of about from 50 to 200nm, exhibited a homogeneous dispersion in the copper matrix. Due to their reinforcement, the hardness and Young's modulus of $Cu-TiB_2$ composites were enhanced with increasing the cooling rate. Moreover, the electrical conductivity of the composites were improved with increasing the cooling rate.

Microstructure and Tensile Property of In-Situ (TiB+TiC) Particulate Reinforced Titanium Matrix Composites (반응생성 합성에 의한 (TiB+TiC) 입자강화 Ti기 복합재료의 미세조직 및 인장특성 평가)

  • Choi, Bong-Jae;Kim, Young-Jig
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.8
    • /
    • pp.780-789
    • /
    • 2010
  • The aim of this study is to evaluate the microstructure and tensile property of in-situ (TiB+TiC) particulate reinforced titanium matrix composites (TMCs) synthesized by the investment casting process. Boron carbide ($1,500{\mu}m$ and $150{\mu}m$) was added to the titanium matrix during vacuum induction melting, which can provide the in-situ reaction of $5Ti+B_4C{\rightarrow}4TiB+TiC$. 0.94, 1.88 and 3.76 wt% of $B_4C$ were added to the melt. The phases identification of the in-situ synthesized TMCs was examined using scanning electron microscopy, an X-ray diffractometer, an electron probe micro-analyzer and transmission electron microscopy. Tensile properties of TMCs were investigated in accordance with the reinforcement size and volume fraction. The improvement of tensile property of titanium matrix composites was caused by load transfer from the titanium matrix to the reinforcement and by grain refinement of titanium matrix and reinforcements.

Microstructures and Mechanical Properties of SiCp/ Al-Si-Mg Alloy Composites Fabricated by Rheo-compocasting and Hot Extrusion (Rheo-compocasting 및 열간압출에 의하여 제조한 Al-Si-Mg / SiC 입자강화 복합재료의 조직 및 기계적 특성)

  • Lee, Hag-Ju;Hong, Chun-Pyo
    • Journal of Korea Foundry Society
    • /
    • v.12 no.4
    • /
    • pp.335-345
    • /
    • 1992
  • Aluminum alloy matrix composites reinforced with various amounts of SiC particles have been produced by rheo-compocasting followed by hot extrusion. A relatively uniform distribution of SiC particles in the composites was obtained. The amounts of pore and SiC particles cluster were relatively small in the composites. Particle free zones were observed in the hot extruded composites when the amount of SiC particles was less than 20 vol%. However, the width of particle free zone decreases with the increase of SiC particle content. Eutectic Si phase play an important role for improving bonding between SiC particle and matrix. Tensile and yield strength increased with the increase of SiC particle content. the strenthening effect of SiC particle addition was effective even at relatively high temperature of 573 K.

  • PDF

Mechanical Properties of High Strength Aluminum Alloy Composites Reinforced by SiC Particulates (SiC 입자로 분산 강화된 고력 알루미늄 합금 복합재료의 기계적 성질)

  • Lee, Eui-Gil;Choi, Woon;Nam, Seung-Eui
    • Journal of Korea Foundry Society
    • /
    • v.17 no.2
    • /
    • pp.164-169
    • /
    • 1997
  • Mechanical properties of aluminum-matrix composites, fabricated by dispersion of fine SiC particulates of which size was less than 1 ${\mu}m$ into 2024 and 7075 aluminum alloys, have been investigated. Homogeneous mixing between the matrix and SiC particulates could be achieved by jar milling for 8 hours with appropriate processing agent. At temperatures below 473K, high-temperature tensile strength of the composites was higher than that of the 2024 and 7075 aluminum alloys which were used as matrix materials. However, tensile strength of the composites was approximated to that of the matrix materials at 573K. Thus, it could be suggested that effects of particle dispersion on tensile strength of aluminum alloys was diminished at temperatures higher than 573K.

  • PDF

Interfacial Characteristics of $Al-2024/Al_2O_{3p}$ Composite Fabricated by Rheo-compocasting (Rheo-compocasting법으로 제조된 알루미나 입자강화 Al합금 복합재료의 계면반응)

  • Hyun, Suhk-Jong;Ye, Byung-Joon
    • Journal of Korea Foundry Society
    • /
    • v.13 no.3
    • /
    • pp.285-294
    • /
    • 1993
  • Aluminum alloy 2024 matrix composites reinforced with $Al_2O_3$ particles, were prepared by rheo-compocasting, a process which consists of the incoporation distribution of reinforcement by stirring within a semi-solid alloy. The microstructures and characteristics of the interfaces have been studied using optical microscope and scanning electon microscope in 2024 aluminum alloy composites reinforced with $Al_2O_3$ particles. The main results are as follows: (1) $Al_2O_3$ particles were well distributed in composites by using rheo-compocasting. (2) As the addition of $Al_2O_3$ particle increases, the average dendrite numbers and the hardness were increased. (3) Interaction between $Al_2O_3$ particles and alloy 2024 resulted in the formation of Mg and Cu element rich region around the $Al_2O_3$ particles.

  • PDF

A Study of Threshold stress during High Temperature Creep of $\textrm{BN}_f$/Al-5, wt% Mg Metal Matrix Composite (BN 입자 강화 Al-5wt% Mg 기지 복합재료의 고온 크립 변형에서의 임계응력 해석)

  • Song, M.H.;Kwon, H.;Kim, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.04a
    • /
    • pp.187-191
    • /
    • 2000
  • High temperature creep behaviour of Al-5 wt% Mg alloy reinforced with 7.5% BN flakes was studied. The composite specimens showed two main creep characteristics : (1) the value of the apparent stress exponent of the composite was high and varied with applied stress (2) the apparent activation energy for creep was much larger than that for self-diffusion in aluminum The true stress exponent of the composite was set equal to 5. Temperature dependence of the threshold stress of the composite was very strong. Which could not be rationalized by allowing for the temperature dependence of the elastic modulus change. AIN particles which were incorporated into the Al matrix during fabrication of the composite by the PRIMEXTM method were found to be effective barriers to dislocation motion and to give rise the threshold stress during creep of the composite

  • PDF

Effect of Volume fraction of SiC Particle Reinforcement on the Wear Properties of 6061AI Composites (6061AI 복합재료 마모특성에 미치는 SiC입자 강화재 체적분율의 영향)

  • Kim, Heon-Joo
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.15 no.2
    • /
    • pp.82-92
    • /
    • 2002
  • In the present investigation wear behavior of the 6061AI composites reinforced with 5, 10, 20% SiC particles for dry sliding against a SM45C counterface was studied as a function of load and sliding velocity. Sliding wear tests were conducted at two loads(19.6 and 49N) and three sliding velocities(0.2, 1 and 2 m/sec) at constant sliding distance of 4000 m using pin-on-disk machine under room temperature. Presence of SiC reinforcement particles in the composites has displayed a transition from mild to severe wear at relatively higher applied load and sliding velocity compare to that of the matrix metal. As the volume fraction of SiC particles increased, the transition moved to a more severe wear conditions. Eventually, mild wear prevailed at a most severe wear conditions in this study, that was 49N load and 2 m/sec sliding velocity in 20% SiC particle/6061AI composite.

Temperature Dependent Failure Machanisms of CaCO3 / PP Particulates ($CaCO_3$ / PP 입자 강화 복합재료의 온도변화에 따른 파괴기구)

  • Koh, Sung-Wi;Kim, Hyung-Jin
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.30 no.3
    • /
    • pp.220-226
    • /
    • 1994
  • In this paper the failure mechanisms of polypropylene resin composites filled with calcium carbonate particulates have been studied in the temperature range $-50^{\circ}C$ to $-50^{\circ}C$ The fillers used are both untreated and surface treated with stearic acid. The impact fracture toughness is evaluated from the impact energy absorbed divided by the uncut ligament area of the specimen. Impact fracture toughness increases as temperature is raised whether the fillers are coated or not. The static fracture toughness of these particular composites is evaluated based on the linear clastic fracture toughness of these particular composites is evaluated based on the linear clastic fracture mechanics. Static fracture toughess decreases with increasing temperature whether the fillers are coated or not. An extended stress whitened zone are observed through a large number of availabel sites for cavitation/debonding along particle matrix interface and matrix deformation.

  • PDF

Mechanical Properties and Microstructures of Alumina Composites Reinforced with SiC Whiskers and TiC Particles (SiC 휘스커 및 TiC 입자 강화 알루미나 복합재료의 기계적 성질과 미세조직)

  • 이영규;김준규;조원승;최상욱
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.8
    • /
    • pp.792-798
    • /
    • 2000
  • Alumina composites reinforced with SiC whiskers only or combinded with TiC particles were prepared by hot-pressing at 1850$^{\circ}C$ for 1h. The mechanical properties and microstructures of composites were investigated in this study. By of addition either 20 vol% SiC whiskers or 20 vol% TiC particles, the flexural strength fo alumina was increased from 360 MPa to 650 MPa or 730 MPa, respectively, and the KIC was also increased from 3.5 MPa$.$m1/2 to 5.5MPa$.$m1/2 or 4.4MPa$.$m1/2, respectively. In the case of composites with 20 vol% SiC whiskers and 2 vol% TiC particles. The flexural strength and KIC showed relatively high value of 800 MPa and 5.3MPa$.$m1/2, respectively. The improvement of mechanical properties was considered to be due to both the smaller average grain size and the crack deflection.

  • PDF

Effect of Mechanical and Toughening Characteristics of Epoxy/Carbon Fiber Composite by Polyamide 6 Particles, CTBN Addition Technology (Polyamide 6 입자 및 CTBN 첨가 기술에 따른 에폭시/탄소섬유 복합재의 강인화 효과 및 기계적 특성)

  • Sung-Youl Bae;Kyo-Moon Lee;Sanjay Kumar;Ji-Hun Seok;Jae-Wan Choi;Woo-Hyuk Son;Yun-Hae Kim
    • Composites Research
    • /
    • v.36 no.5
    • /
    • pp.355-360
    • /
    • 2023
  • Epoxy-based carbon fibers reinforced plastic (CFRP) exhibit limitations in their suitability for industrial applications due to high brittleness characteristics. To address this challenge, extensive investigations are underway to enhance their toughness properties. This research focuses on evaluating the toughening mechanisms achieved by Polyamide 6 particles(p-PA6) and Carboxyl-Terminated Butadiene-Acrylonitrile (CTBN) elastomer, with a specific emphasis on utilizing minimal additive quantities. The study explores the impact of varying concentrations of p-PA6 and CTBN additives, namely 0.5, 1, 2.5, and 5 phr, through comprehensive Mode I fracture toughness and tensile strength analyses. The inclusion of p-PA6 demonstrated improvements in toughness when introduced at a relatively low content of 1phr. This improvement manifested as a sustained fracture behavior, contributing to enhanced toughness, while simultaneously maintaining the material's tensile strength. Furthermore, the investigation revealed that the incorporation of p-PA6 affected in particle aggregation, thus influencing the overall toughening mechanism. Incorporation of CTBN, an elastomeric modifier, exhibited a pronounced increase in fracture toughness at higher concentrations of 2.5 phr and beyond. However, this increase in toughness was accompanied by a reduction in tensile strength, resulting in fracture behavior similar to conventional CFRP exhibiting brittleness. The synergy between pPA6, CTBN and CFRP appeared to marginally enhance tensile strength under specific content conditions. As a result of this study, optimized conditions for the application of the p-PA6, CTBN toughening technology have been identified and established.