Temperature Dependent Failure Machanisms of CaCO3 / PP Particulates

$CaCO_3$ / PP 입자 강화 복합재료의 온도변화에 따른 파괴기구

  • Published : 1994.09.01

Abstract

In this paper the failure mechanisms of polypropylene resin composites filled with calcium carbonate particulates have been studied in the temperature range $-50^{\circ}C$ to $-50^{\circ}C$ The fillers used are both untreated and surface treated with stearic acid. The impact fracture toughness is evaluated from the impact energy absorbed divided by the uncut ligament area of the specimen. Impact fracture toughness increases as temperature is raised whether the fillers are coated or not. The static fracture toughness of these particular composites is evaluated based on the linear clastic fracture toughness of these particular composites is evaluated based on the linear clastic fracture mechanics. Static fracture toughess decreases with increasing temperature whether the fillers are coated or not. An extended stress whitened zone are observed through a large number of availabel sites for cavitation/debonding along particle matrix interface and matrix deformation.

Keywords