• Title/Summary/Keyword: 입자영상유속

Search Result 114, Processing Time 0.026 seconds

Simultaneous Measurement of Internal and External Flow Fields around the Droplet Formation in a Microchannel (마이크로 채널 내 Droplet 형성에 따른 내${\cdot}$외부 유동장 동시측정)

  • Kim Kyung Chun;Kim Jae Min;Yoon Sang Youl
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.80-83
    • /
    • 2004
  • This experiment has been carried out to measure the process of droplet formation between water phase fluid$(PVA\;3\%)$ and organic phase fluid(oil), Internal and External flow fields measured by a Dynamic Micro-PIV method Water-in-oil(W/O) droplets successfully generated at a cross junction and Y junction. Internal and external flow fields were measured when the droplet grew up, stretched and separated.

  • PDF

Visualization of the two-layered electroosmotic flow and its EHD instability in T-channels by micro PIV

  • Kang Kwan Hyoung;Shin Sang Min;Lee Sang Joon;Kang In Seok
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.75-78
    • /
    • 2003
  • An interfacial instability has recently been observed for the DC- and AC-powered electroosmotic flows of the two miscible electrolyte layers having different concentrations in microchannels. It is rather contrary to our common belief that the flow inside a microchannel is generally stable due to the dominant role of the viscous damping. In this work, we visualized the electroosmotic flow inside a T-channel to validate the numerical predictions. It is clearly shown that the strong vortices (which characterize the interface shapes) are generated at the interface of the two fluids, as was predicted in the numerical analysis.

  • PDF

A Study on the Flow Characteristic of the Diesel Engine DPF (디젤엔진용 매연여과장치 내부유동 특성 연구)

  • Go, Hyun-Sun;Jung, Chan-Gyu;Lee, Heang-Nam
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.109-117
    • /
    • 2012
  • This paper addresses influence on the flow field by varying the length of DPF Inlet pipe in 5 ways. Numerical analysis is carried out by using PIV and commercial code and as a result, PIV and commercial code shows correlation correspond to 87%. Furthermore, in the same velocity condition, as stable and high pressure value is shown when the Inlet pipe length is 20mm, particulate filtering rate can be increased.

Development of Hybrid Micro/Nano PIV system (하이브리드 마이크로/나노 PIV 시스템 개발)

  • Min, Young-Uk;Lee, Dong-Yeop;Kim, Kyung-Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.8 no.4
    • /
    • pp.31-37
    • /
    • 2010
  • In this study, a novel hybrid micro/nano PIV system combining defocusing and TIRFM technique has been developed for the multiscale flow measurement. With the developed system, both far and near field velocity fields have been measured simultaneously in a 2D straight microchannel and the particle trajectories were extracted by the nearest tracking algorithm. The shear rate values taken from experimental results have been estimated by comparing with the analytical solution of 2D Poiseuille flow and it is confirmed that the result shows good agreement with the theoretical value.

An Experimental Study on the Flow Characteristics in Highly Viscous Liquid by Multi-Nozzle Bubbling (고점성 액체 내부에서의 다중 노즐 버블링에 의한 유동특성에 대한 실험적 연구)

  • Kim, Hyun-Dong;Ryu, Seung-Gyu;Kim, Kyung-Chun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.2 s.257
    • /
    • pp.195-201
    • /
    • 2007
  • A visualization study of flow characteristics in a mixer using multi-nozzle bubbling was performed. The mixer is filed with liquid glycerin (dynamic viscosity = $1000mPa{\cdot}s\;at\;25^{\circ}C$) and convective mixing is induced by air bubbles generated from 9 orifices installed on the bottom of the mixer. To visualize the flow field, PIV (Particle Image Velocimetry) system consisting of 532nm Nd:YAG laser, $2k{\times}2k$ CCD camera and synchronizer is adopted. The bubbles generated with uniform size and frequency form bubble stream and bubble streams rise vertically without interaction between bubble streams. Mixing efficiency is affected by the height of bubbler and the effective height of bubbler is 20nm from the bottom of the mixer.

The Effect of Surface Roughness on the Zero Pressure Gradient Turbulent Boundary Layers (영압력 구배 난류 경계층에서 표면조도가 미치는 영향)

  • Kim Moon-Kyung;Yoon Soon-Hyun;Kim Dong-Keon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.4
    • /
    • pp.453-460
    • /
    • 2005
  • Experiments were conducted to investigate the effect of the surface roughness on the flat plate turbulent boundary layer. The square rods were installed at the leading edge to make surface roughness. The particle image velocimetry was used to measure the mean velocities and velocity fluctuation component. All measurements were made over a range of w/k=1. 2 5 and $Re_x=80.000{\sim}360,000$. Friction velocity was measured by using Clauser plot method. The level of turbulent intensities on roughness surface appears more strongly than that of turbulent intensities on flat plate. A correlation of boundary layer thickness in term of $Re_x$ and w/k are presented.

Flow Visualization and PIV Measurement of Multiphase Flow in Highty Viscous Liquid (고점성 유체 내부에서의 다상유동장 가시화 및 PIV 측정)

  • Kim, Hyun-Dong;Ryu, Seung-Gyu;Kim, Kyung-Chun
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2006.12a
    • /
    • pp.48-54
    • /
    • 2006
  • A visualization study of flow characteristics in a mixer using multi-nozzle bubbling was performed. The mixer is filled with liquid glycerin (dynamic viscosity = $1000mPa{\cdot}$ s at $25^{\circ}C$) and convective mixing is induced by air bubbles generated from 9 orifices installed on the bottom of the mixer. To visualize the flow field, PIV (Particle Image Velocimetry) system consisting of 532nm Nd:YAG laser, $2k\times2k$ CCD camera and synchronizer is adopted. The bubbles generated with uniform size and frequency form bubble stream, and bubble streams rise vertically without interaction between bubble streams. Mixing efficiency is affected by the height of bubbler and the effective height of bubbler is 20mm from the bottom of the mixer.

  • PDF

Fluidelastic Instability of Flexible Cylinders in Tube Bundle Subjected to Cross Air-flow (공기-횡 유동장에 놓인 유연성 실린더 관군의 유체탄성 불안정)

  • Sim, Woo-Gun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.6 s.123
    • /
    • pp.498-506
    • /
    • 2007
  • Using wind tunnel, experimental approaches were employed to investigate fluidelastic instability of tube bundles, subjected to uniform cross flow. There are several flow-induced vibration excitation mechanisms, such as fluidelastic instability, periodic wake shedding resonance, turbulence-induced excitation and acoustic resonance, which could cause excessive vibration in shell-and tube heat exchanges. Fluidelastic is the most important vibration excitation mechanism for heat exchanger tube bundles subjected to cross flow. The system comprised of cantilevered flexible cylinder(s) and rigid cylinders of normal square array, In order to see the characteristics of flow in tube bundles, particle image velocimetry was used. From a practical design point of view, Fluidelastic instability may be expressed simply in terms of dimensionless flow velocity and dimensionless mass-damping. The threshold flow velocity for dynamic instability of cylinder rows is evaluated and the data for design guideline is proposed for the tube bundles of normal square array.

A Study on flow optimization of thermoelectric refrigerator using visualization technique (가시화 기법을 이용한 열전소자 냉장고의 유동최적화에 관한 연구)

  • Kim, Bo-ra;Lee, Change-je;Jeong, Yeon-ho;Whang, Kwang-il;Cho, Gyeong-rae
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.1
    • /
    • pp.94-99
    • /
    • 2021
  • In order to increase the efficiency of thermoelectric refrigerators using the Peltier effect, it is necessary to optimize the distribution of the flow of cold air from the fan. In this study, the flow flowing upwards and downwards while changing the area of the flow path was visualized using the PIV technique for the control of cold air in a thermoelectric refrigerator. From these results, the flow rate according to the change in the area of the flow path was confirmed, and design criteria for optimizing the distribution of cold air flowing to the top and bottom of the refrigerator were suggested.

Characterization of Vortex Advection from a Synthetic Jet Impinging on a Wall (충돌 합성 제트의 와류 이송 특성 분석)

  • Kim, MuSeong;Lee, HoonSang;Hwang, Wontae
    • Journal of the Korean Society of Visualization
    • /
    • v.17 no.2
    • /
    • pp.39-47
    • /
    • 2019
  • Impingement cooling utilizing synthetic jets is emerging as a popular cooling technique because of its high local cooling efficiency. The interaction between the vortex structure of the synthetic jet and the surface is crucial in understanding the mechanism of this technique. In this study, the impinging vortex structure and its advection are investigated by experiments with jet-to-surface spacing $2{\leq}H/D{\leq}7$, and synthetic jet Reynolds number $5120{\leq}Re{\leq}9050$. Using phase-locked particle image velocimetry, ensemble averaged (phase averaged) flow fields are obtained, and vortex identification and quantification techniques are applied. The shape, trajectory, and intensity change of the vortex are assessed. A sharp decline in the vortex intensity and the occurrence of a counter-rotating vortex at the impingement point are observed.