• Title/Summary/Keyword: 입도분리

Search Result 151, Processing Time 0.024 seconds

Analysis of Relationship between Kanghwa Tidal Flat Channel and Sedimentary Facies Using EOC. (EOC를 이용한 강화도 갯벌 조류로와 퇴적상과의 관계 연구)

  • 유주형;우한준;유홍룡;안유환
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2004.03a
    • /
    • pp.475-479
    • /
    • 2004
  • 위성에서 감지되는 조간대 원격 반사도는 함수율, 퇴적상, 지형과 생물체 등의 영향에 의해 결정된다. 따라서 다른 환경요인을 제거하지 않고 위성자료 값을 분류하여 퇴적상과 비교한다면 좋은 결과를 얻을 수 없다. 하지만 퇴적상과 다른 환경요인은 관계가 복잡하고 미묘하게 얽혀있기 때문에 위성 자료 값에서 정량적으로 분리하거나 고려하는 것은 매우 어렵다. 특히 mud flat의 조류로나 세곡 부분은 배수구배의 발달로 인해 표층이 빠르게 마르게 되어 매우 높은 광학 반사도를 보이고 이는 sand가 우세한 지역의 높은 광학반사도와의 구별을 어렵게 만든다. 따라서 본 연구에서는 위성자료의 원격반사도 값만으로 조간대의 표층 퇴적상을 분류할 경우 에러가 발생할 수 있는 이러한 문제를 해결하기 위하여 조간대 texture와 표층 퇴적상과의 관계를 파악하고자 한다. 6.6 m 해상도를 갖는 EOC 자료를 이용하여 조류로의 형태와 밀도를 알아내고, 현장에서 샘플 된 입도 자료를 분석하여 비교함으로서 상관관계를 알아보고자 한다. mud flat의 경우, 대부분 복잡한 texture 구조를 갖고 밀도가 매우 높게 나타났으며 mixed flat 지역에서는 직선 구조를 갖는 큰 조류로가 발달하며 일부지역에서는 표면수가 잔존함에 의해 조간대에서 가장 어둡게 나타났다. 반면 sand shoal 이나 chenier 등과 같이 sand의 함량이 매우 높은 곳에서는 지형이 높아 함수율이 매우 낮아 높은 광학 반사도를 보임을 알 수 있었다.

  • PDF

A study on the removal of the water from the anthracite slurry by Oil Agglomeration Prosess(partI) (Oil Agglomeration Process에 의한 무연탄 슬러리의 탈수에 관한 연구(제1보))

  • 권이동;신강호;조동성
    • Resources Recycling
    • /
    • v.2 no.2
    • /
    • pp.39-44
    • /
    • 1993
  • This study was carried out to remove the water from low grade anthracite slurry produced at Eoryong coal mine by the oil agglomeration process. 80% of Anthracite as a coal oil mixture (COM) was separated from water by the difference of specific gravity. Then, the amount of kerosene, diesel oil, and heavy oil forming COM was 10% of the amount of sample, respectively. The recovery rate of combustibles and ash content of agglomerated anthracite were affected largely by the amount of added oil, pulp density, particle size, mixing time, and impeller speed. The recovery rate of combustibles was increased to 95% and ash content was decrea-sed from 30% to 13.5% under the optimum conditions.

  • PDF

Clean Flotation Process to Recycle useful Materials from Fly Ash (비산재로부터 유용성분을 회수하는 청정부유선별공정)

  • Han, Gwang Su;Kim, Dul-Sun;Lee, Dong-Keun
    • Clean Technology
    • /
    • v.26 no.3
    • /
    • pp.177-185
    • /
    • 2020
  • All coal ash, generated from coal-fired power plants, is entirely dumped onto a landfill site. As coal ash contains 80% fly ash, a clean floating process was developed in this study to recover useful components from coal ash and to use them as high value-added industrial materials. When the unburned carbon (UC) was recovered from the fly ash, soybean oil, an eco-friendly vegetable oil, was used as collector instead of a non-ionic kerosene collector to prevent the occurrence of odor from the kerosene. After the UC was separated by flotation, particulate ceramic microsphere (CM) was recovered, without generating acidic wastewater, through hydro-cyclone instead of sulfuric acid solution in order to separate ceramic microsphere (CM) and cleaned ash (CA) from the residue. By utilizing soybean oil as a collector, the recovery rate of UC turned high at 85.8% due to the increased adsorption of UC, the high viscosity of soybean oil, and the increase in floating properties caused by the linoleic acid contained in soybean oil. All of the combustible components contained in the recovered UC were carbon components, with the carbon content registering high when soybean oil was used. The recovered UC had many pores with a rough surface; thus, it could be easily ground and then used as an industrial material for its fine particles. The CM and CA recovered by the clean separation process using hydro-cyclone had a spherical shape, and the particles were clearly separated without clumping together. The average diameter (D50) of the particles was 5 ㎛, so it was possible to realize the atomization of CM through a process change.

Study for Seperation Process of Copper from the Low-grade Copper Ore by Hydrometallrugical Process (저품위 동광으로부터 습식제련공정에 의한 구리의 분리 공정 연구)

  • Shin, Dong Ju;Joo, Sung-Ho;Lee, Dongseok;Jeon, Ho-Seok;Shin, Shun Myung
    • Resources Recycling
    • /
    • v.30 no.5
    • /
    • pp.57-66
    • /
    • 2021
  • In this study, we attempted to separate and recover Cu from low-grade copper ore by a hydrometallurgical process. The leaching sample obtained after crushing and sieving by 0.355 mm of low-grade copper ore contained 1.5% Cu, 4.7% Fe, 1.0% Mn, and 0.3% Zn. The Cu in the oxide ore was very well leached into sulfuric acid and 97% Cu leaching efficiency was achieved at 80℃ and 3 M sulfuric acid (H2SO4). From the leaching solution, Cu was separated by solvent extraction from Fe, Mn, and Zn using LIX984N. The separation tendency between Cu and other metals was confirmed through the distribution ratio and separation factor. By plotting the McCabe-Thiele Diagram, the optimum condition for recovering Cu is 5 vol.% LIX984N, 2-stage counter-current solvent extraction, and an O/A ratio of 0.5. Using this method, 99% of the Cu was extracted and a CuSO4 solution was finally obtained that contained 1.6 g/L Cu after the stripping process using 2 M H2SO4.

A Study on the Applicability of Soilremediation Technology for Contaminated Sediment in Agro-livestock Reservoir (농축산저수지 오염퇴적토의 토양정화기술에 대한 적용성 연구)

  • Jung, Jaeyun;Chang, Yoonyoung
    • Journal of Environmental Impact Assessment
    • /
    • v.29 no.3
    • /
    • pp.157-181
    • /
    • 2020
  • Sediments from rivers, lakes and marine ports serve as end points for pollutants discharged into the water, and at the same time serve as sources of pollutants that are continuously released into the water. Until now, the contaminated sediments have been landfilled or dumped at sea. Landfilling, however, was expensive and dumping at sea was completely banned due to the London Convention. Therefore, this study applied contaminated sedimentation soil of 'Royal Palace Livestock Complex' as soil purification method. Soil remediation methods were applied to pretreatment, composting, soil washing, electrokinetics, and thermal desorption by selecting overseas application cases and domestically applicable application technologies. As a result of surveying the site for pollutant characteristics, Disolved Oxigen (DO), Suspended Solid (SS), Chemical Oxygen Demand (COD), Total Nitrogen (TN), and Total Phosphorus (TP) exceeded the discharged water quality standard, and especially SS, COD, TN, and TP exceeded the standard several tens to several hundred times. Soil showed high concentrations of copper and zinc, which promote the growth of pig feed, and cadmium exceeded 1 standard of Soil Environment Conservation Act. In the pretreatment technology, hydrocyclone was used for particle size separation, and the fine soil was separated by more than 80%. Composting was performed on organic and Total Petroleum Hydrocarbon (TPH) contaminated soils. TPH was treated within the standard of concern, and E. coli was analyzed to be high in organic matter, and the fertilizer specification was satisfied by applying the optimum composting conditions at 70℃, but the organic matter content was lower than the fertilizer specification. As a result of continuous washing test, Cd has 5 levels of residual material in fine soil. Cu and Zn were mostly composed of ion exchange properties (stage 1), carbonates (stage 2), and iron / manganese oxides (stage 3), which facilitate easy separation of contamination. As a result of applying acid dissolution and multi-stage washing step by step, hydrochloric acid, 1.0M, 1: 3, 200rpm, 60min was analyzed as the optimal washing factor. Most of the contaminated sediments were found to satisfy the Soil Environmental Conservation Act's standards. Therefore, as a result of the applicability test of this study, soil with high heavy metal contamination was used as aggregate by applying soil cleaning after pre-treatment. It was possible to verify that it was efficient to use organic and oil-contaminated soil as compost Maturity after exterminating contaminants and E. coli by applying composting.

Cooling and Antisolvent Crystallization of Potassium Bicarbonate in the Presence of Sterically Hindered Alkanolamines (입체 장애 알카놀아민 혼합 수용액에서 중탄산칼륨 결정의 냉각 반용매 결정화)

  • Jo, Chang Sin;Jung, Taesung;Yoon, Hyoung Chul;Kim, Jong-Nam;Rhee, Young Woo
    • Clean Technology
    • /
    • v.20 no.4
    • /
    • pp.383-389
    • /
    • 2014
  • $CO_2$ absorption processes have a good potential for large scale capture of $CO_2$ but a large amount of absorbing solution has to be regenerated, undesirably increasing the consumption of energy such as sensible heat and latent heat of vaporization. In this study, a cooling crystallization process which would separate the $CO_2$-rich potassium bicarbonate crystals from $CO_2$-lean water was developed to reduce the energy penalty. Sterically hindered alkanolamine additives were used to enhance the $CO_2$ removal efficiency and their antisolvent effect on the crystallization was found in a continuous cooling crystallizer. The production yields of crystals were increased in the sequence of 2-amino-2-methyl-1-propanol (AMP) < 2-amino-2-methyl-1,3-propanediol (AMPD) < 2-amino-2-hydroxymethyl-1,3-propanediol (AHPD), which are related to the number of hydroxyl groups in the additive molecules. Using $^{13}carbon$ nuclear magnetic resonance, the additives favored the formation of bicarbonate ions by steric hindrance effect and increased the supersaturation of $KHCO_3$. It is shown that the additives increase the mean size of crystals and crystal growth rate by increasing supersaturation. The additives are promising for enhancing the $CO_2$ removal efficiency and reducing the regeneration energy cost of $CO_2$ absorbing solution by promoting $KHCO_3$ crystallization.

A Study on Classification of Limonite and Saprolite from Nickel Laterite Ores (뉴칼레도니아산 니켈라테라이트광의 분급 연구)

  • Seo, Joobeom;Kim, Kee-seok;Bae, In-kook;Lee, Jae-young;Kim, Hyung-seok
    • Resources Recycling
    • /
    • v.25 no.1
    • /
    • pp.40-47
    • /
    • 2016
  • Nickel laterite ore is classified into two principal ore types: saprolite (silicate ore) and limonite (oxide ore). Saprolite-type ore characterized by high magnesia and silica contents is treated by pyrometallurgy process. On the other hand, limonite-type ore is subjected to hydrometallurgy process to produce nickel products. Hydrometallurgy process requires that a raw material to meet the demands that Si+Mg contents lower than 10% and Fe content over than 40%. It is therefore required that separation of saprilite-type ore to use nickel laterite ore as a raw material for hydrometallurgy process. In this study, separation of sparolite-type ore and limonite-type ore from nickel laterite ore from New Caledonia has been tried by dry classification. The results show that -5 mm size fraction and +5 mm size fraction of the nickel laterite ore contains mainly limonite-type ore and saprolite-type ore, respectively. To understand the moisture content of the raw ore on the dry classification, nickel laterite ore with different moisture contents of 23.0% and 9.1% were subjected to the dry classification. The results show that drying of the ore makes the separation more efficient as the amount of the fine product, that can be subjected to hydrometallurgy process without further separation or drying operations, was increased.

Reactivated Timings of Yangsan Fault in the Northern Pohang Area, Korea (포항 북부지역 양산단층의 재활동 연대)

  • Sim, Ho;Song, Yungoo;Son, Moon;Park, Changyun;Choi, Woohyun;Khulganakhuu, Chuluunbaatar
    • Economic and Environmental Geology
    • /
    • v.50 no.2
    • /
    • pp.97-104
    • /
    • 2017
  • Here we present the timings of reactivated events from a fault in the northern Pohang area, which should be located at the northern-end of Yangsan fault line, the major fault in the southeastern Korean Peninsula. Recently developed illite-age-analysis (IAA) approach was employed for determining the fault-activated timing, combined with illite-polytype quantification using the optimized full-pattern-fitting (FPF) method, and K-Ar age-dating for each size fraction($<0.1{\mu}m$, $0.1-0.4{\mu}m$, and $0.4-1.0{\mu}m$) of 4 fault clay samples. Two chronological records of brittle fault-activation events were recognized at $19.6{\pm}1.86Ma$ and $26.1{\pm}2.55-27.9{\pm}3.46Ma$. The ages are much younger than those of fault clays from Sangcheon-ri area (41.5~43.5 and 50.7 Ma), the southern part of Yangsan fault line, and are close to the timing of East Sea-opening event. Further chronological analysis for additional sites of the Yangsan fault should be needed to reveal the time-scheme of the tectonic events and their spatial distributions along the fault line.

Effect of Pretreatment Process on Hybrid Membrane Filtration Performance (원수의 물리.화학적 특성에 따른 막 분리 공정의 전처리 공정 적용성 평가)

  • Jung, Chul-Woo;Son, Hee-Jong;Bae, Sang-Dae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.6
    • /
    • pp.613-619
    • /
    • 2006
  • The objectives of this research are to evaluate the effect of membrane materials, particulate matter and membrane pore size on permeate flux. It was shown that the removal efficiency of high MW organic matter more than 10 kDa was lower than that of low MW organic matter for $MIEX^{(R)}$ process. For the change of permeate flux by the pretreatment process, $MIEX^{(R)}+UF$ process showed high removal efficiency of organic matter as compared with coagulation+UF processes, but high reduction rate of permeate flux was presented through the reduction of removal efficiency of high MW organic matter. The pretreatment of the raw water significantly reduced the fouling of the hydrophilic membrane, but did not decrease the flux reduction of the hydrophobic membrane. Flux decline on MF process increased due to the pore clogging, while the permeate flux decline of UF process decreased due to the formation of cake layer. It was shown that particle matter was not effect on MIEX+membrane process. But, for coagulation+membrane process, particle matter was important factor on permeate flux.

Mineralogy of Sea Sand Near Ongjingun through the Separation Processes (옹진군 해사의 선별공정에 따른 광물학적 특성)

  • Chae, Soo-Chun;Shin, Hee-Young;Bae, In-Kook;Kwon, Sung-Won;Lee, Chun-Oh;Kim, Jung-Yoon;Jang, Young-Nam
    • Journal of the Mineralogical Society of Korea
    • /
    • v.24 no.1
    • /
    • pp.1-17
    • /
    • 2011
  • Mineralogical study was carried out for heavy minerals in the sea sand near Ongjingun bay, Kyonggi-do separated using the gravity and magnetic separators. Ilmenite, zircon and minor monazite and garnet were valuable minerals with gangue minerals of quartz, K-feldspar, plagioclase, muscovite, hornblende, epidote and chlorite. Quantitative analysis with SIROQUANT program showed that the contents of ilmenite separated with the gravity separation (the shaking table separation), the 1st step magnetic separation (rare earth magnetic separation) and the 2nd step magnetic separation (the Eddy current magnetic separation) were increased into 0.8, 18.3, and 48.7%, respectively. The content of ilmenite, monazite and zircon were recalculated based on the chemical composition of the representative and heavy fraction products of raw sand, the 1 step and 2 step gravity separations, and the 1 step and 2 step magnetic separations. The content increased to 0.23, 0.55, 5.22, 16.17, and 44.99% in ilmenite, 0.11, 0.02, 0.16, 0.51, and 1.19% in monazite. Although the zircon content did not differ over the processes (0.13, 0.12, 0.11, 0.15, and 0.10%), the improved recovery of zircon is expected by applying sieving process because of its high content (27%) in the fine grain size fraction (< 140#) of the 2 step gravity separation.