DOI QR코드

DOI QR Code

Study for Seperation Process of Copper from the Low-grade Copper Ore by Hydrometallrugical Process

저품위 동광으로부터 습식제련공정에 의한 구리의 분리 공정 연구

  • Shin, Dong Ju (Resources Recovery Research Center, Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources(KIGAM)) ;
  • Joo, Sung-Ho (Resources Recovery Research Center, Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources(KIGAM)) ;
  • Lee, Dongseok (Resources Recovery Research Center, Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources(KIGAM)) ;
  • Jeon, Ho-Seok (Resources Recovery Research Center, Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources(KIGAM)) ;
  • Shin, Shun Myung (Resources Recovery Research Center, Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources(KIGAM))
  • 신동주 (한국지질자원연구원 광물자원연구본부 자원회수연구센터) ;
  • 주성호 (한국지질자원연구원 광물자원연구본부 자원회수연구센터) ;
  • 이동석 (한국지질자원연구원 광물자원연구본부 자원회수연구센터) ;
  • 전호석 (한국지질자원연구원 광물자원연구본부 자원회수연구센터) ;
  • 신선명 (한국지질자원연구원 광물자원연구본부 자원회수연구센터)
  • Received : 2021.09.29
  • Accepted : 2021.10.18
  • Published : 2021.10.30

Abstract

In this study, we attempted to separate and recover Cu from low-grade copper ore by a hydrometallurgical process. The leaching sample obtained after crushing and sieving by 0.355 mm of low-grade copper ore contained 1.5% Cu, 4.7% Fe, 1.0% Mn, and 0.3% Zn. The Cu in the oxide ore was very well leached into sulfuric acid and 97% Cu leaching efficiency was achieved at 80℃ and 3 M sulfuric acid (H2SO4). From the leaching solution, Cu was separated by solvent extraction from Fe, Mn, and Zn using LIX984N. The separation tendency between Cu and other metals was confirmed through the distribution ratio and separation factor. By plotting the McCabe-Thiele Diagram, the optimum condition for recovering Cu is 5 vol.% LIX984N, 2-stage counter-current solvent extraction, and an O/A ratio of 0.5. Using this method, 99% of the Cu was extracted and a CuSO4 solution was finally obtained that contained 1.6 g/L Cu after the stripping process using 2 M H2SO4.

본 연구에서는 습식제련 공정을 이용하여 저품위 동광으로부터 구리를 회수하고자 하였다. 침출시료는 저품위 동광을 파·분쇄하여 0.355 mm 이하로 입도분리하였으며, 1.5%의 구리, 4.7%의 철, 1.0%의 망간 그리고 0.3%의 아연을 함유하고 있다. XRD 분석 결과 구리는 산화물 형태로 관찰이 되었으며3 M 황산, 80℃ 조건에서 97%의 구리를 침출하였다. 침출용액으로부터 LIX9894N를 사용한 용매추출 공정을 통해 구리를 철, 망간, 아연으로부터 회수하였다. 구리와 다른 금속들 사이의 분리 경향은 분배비와 분리계수를 통해 확인하였다. McCabe-Thiele Diagram을 작도하여, 구리를 회수하는 최적 조건으로 5 vol.% LIX984N, O/A 비율 0.5, 향류 2단 추출을 설정하였다. 이 조건에서 99%의 구리를 추출할 수 있었으며, 2 M 황산으로 탈거한 후에 1.6 g/L의 구리를 함유한 황산구리 용액을 얻을 수 있었다.

Keywords

Acknowledgement

본 연구는 한국지질자원연구원 주요사업인 '국내 부존바나듐(V) 광물자원 선광/제련/활용기술 개발(GP2020-013, 21-3212-1)' 과제의 일환으로 수행되었습니다.

References

  1. U.S. Geological Survey, 2017 : Mineral commodity summaries 2017, U.S. Department of the Interior. USA.
  2. Sohn, H-S., 2019 : Recycling of copper scrap, Journal of Korean Institute of Resources Recycling, 28(3), pp.3-14. https://doi.org/10.7844/KIRR.2019.28.3.3
  3. Hwang, J., Cho, S.S., Seong, C.J., et al., 2020 : Aggregation of thin copper wire by ball milling treatment, Journal of Korean Institute of Resources Recycling, 29(4), pp.67-72. https://doi.org/10.7844/KIRR.2020.29.4.67
  4. Reddy, B.R., Priya, D.N., 2005 : Process development for the separation of copper(II), nickel(II) and zinc(II) from sulphate solutions by solvent extraction using LIX84I, Separation and Purification Technology, 45, pp.163-167. https://doi.org/10.1016/j.seppur.2005.02.014
  5. Panigrahi, S., Parhi, P.K., Sarangi, K., et al., 2009 : A study on extraction of copper using LIX84-I and LIX622N, Separation and Purification Technology, 70, pp.58-62. https://doi.org/10.1016/j.seppur.2009.08.013
  6. Deep, A., Kumar, P., Carvalho, J.M.R., 2010 : Recovery of copper from zinc leaching liquor using ACORGA M5640, Separation and Purification Technology, 76, pp.21-25. https://doi.org/10.1016/j.seppur.2010.09.015
  7. Amari, K.E., Jdid, E-A., Blazy, P., 2013 : Copper recovery from chalcopyrite concentrate acid leach solutions by ACORGA M5397, Physicochemical Problems of Mineral Processing, 49(1), pp.329-339.
  8. Reddy, B.R., Park, K.H., Mohapatra, D., 2007 : Process development for the separation and recovery of copper from sulphate leach liquors of synthetic Cu-Ni-Co-Fe matte using LIX84 and LIX973N, Hydrometallurgy, 87, pp.51-57. https://doi.org/10.1016/j.hydromet.2007.01.004
  9. Lan, Z-Y., Hu, Y-H., Liu, J-S., et al., 2005 : Solvent extraction of copper and zinc from bioleaching solutions with LIX984 and D2EHPA, Journal of Central South University of Technology, 12(1), pp.45-49. https://doi.org/10.1007/s11771-005-0201-z
  10. Elamari, K., Jdid. E.A., Blazy, P., 2006 : Copper solvent extraction from chalcopyrite concentrate acid leach solutions by LIX984, Journal of Mining and Metallurgy, 42B, pp. 1-11. https://doi.org/10.2298/JMMB0601001E
  11. Kotobo, W., Gaydardzhiev, S., Frenay, J., et al., 2010: Separation of copper and zinc by solvent extraction during reprocessing of flotation tailings, Separation Science and Technology, 45, pp.535-540. https://doi.org/10.1080/01496390903529869
  12. Lu, J., Dreisinger, D., 2013 : Solvent extraction of copper from chloride solution I: Extraction isotherms, Hydrometallurgy, 137, pp.13-17. https://doi.org/10.1016/j.hydromet.2013.04.001
  13. Lu, J., Dreisinger, D., 2013 : Solvent extraction of copper from chloride solution II: Cuprous oxidation by oxygen coupled with simultaneous cupric solvent extraction, Hydrometallurgy, 138, pp.48-53. https://doi.org/10.1016/j.hydromet.2013.06.006
  14. Lu, J., Dreisinger, D., 2014 : Two-stage countercurrent solvent extraction of copper from cuprous chloride solution: Cu(II) loading coupled with Cu(I) oxidation by oxygen and iron scrubbiong, Hydrometallurgy, 150, pp.41-46. https://doi.org/10.1016/j.hydromet.2014.09.003
  15. Feng, J., Chuanhua, L., Jinhui, P., et al., 2015 : Solvent extraction of Cu2+ with laminar flow of microreactor from leachant containing Cu and Fe, Rare Metal Technology 2015, TMS Annual Meeting & Exhibition, Orlando, USA, 2015, pp.45-52.
  16. Asghari, H., Safarzadeh, M.S., Asghari, G., et al., 2009 : The effect of impurities on the extraction of copper srom sulfate medium using LIX984N in kerosene, Russian journal of Non-Ferrous Metals, 50(2), pp.89-96. https://doi.org/10.3103/S1067821209020035
  17. Le, H. L., Jeong, J., Lee, J-C., et al., 2011 : Hydrometallurgical process for copper recovery from waste printed circuit boards (PCBs), Mineral Processing and Extractive Metallurgy Review, 32(2), pp.90-104. https://doi.org/10.1080/08827508.2010.530720
  18. Roine, A., Kobylin, P., 2021 : HSC Chemistry® User's Guide, Metso Outotec, Filand Oy.
  19. Miguel, E.R.S., Auilar, J.C., Bernal, J.P., et al., 1997 : Extraction of Cu(II), Fe(III), Ga(III), Ni(II), In(III), Co(II), Zn(II) and Pb(II) with LIX984 dissolved in n-heptane, Hydrometallurgy, 47, pp.19-30. https://doi.org/10.1016/S0304-386X(97)00042-X
  20. Cheng, C.Y., 2000 : Purification of synthetic laterite leach solution by solvent extraction using D2EHPA, Hydrometallurgy, 56, pp.369-386. https://doi.org/10.1016/S0304-386X(00)00095-5