DOI QR코드

DOI QR Code

Mineralogy of Sea Sand Near Ongjingun through the Separation Processes

옹진군 해사의 선별공정에 따른 광물학적 특성

  • Received : 2010.12.01
  • Accepted : 2011.03.23
  • Published : 2011.03.31

Abstract

Mineralogical study was carried out for heavy minerals in the sea sand near Ongjingun bay, Kyonggi-do separated using the gravity and magnetic separators. Ilmenite, zircon and minor monazite and garnet were valuable minerals with gangue minerals of quartz, K-feldspar, plagioclase, muscovite, hornblende, epidote and chlorite. Quantitative analysis with SIROQUANT program showed that the contents of ilmenite separated with the gravity separation (the shaking table separation), the 1st step magnetic separation (rare earth magnetic separation) and the 2nd step magnetic separation (the Eddy current magnetic separation) were increased into 0.8, 18.3, and 48.7%, respectively. The content of ilmenite, monazite and zircon were recalculated based on the chemical composition of the representative and heavy fraction products of raw sand, the 1 step and 2 step gravity separations, and the 1 step and 2 step magnetic separations. The content increased to 0.23, 0.55, 5.22, 16.17, and 44.99% in ilmenite, 0.11, 0.02, 0.16, 0.51, and 1.19% in monazite. Although the zircon content did not differ over the processes (0.13, 0.12, 0.11, 0.15, and 0.10%), the improved recovery of zircon is expected by applying sieving process because of its high content (27%) in the fine grain size fraction (< 140#) of the 2 step gravity separation.

경기도 옹진군부근의 근해로부터 채취된 해사로부터 비중 및 자력선별을 통한 중광물의 회수공정을 실시하여, 광물학적 특성을 분석하였다. 옹진군 해사 내에 포함된 중광물로는 티탄철석, 저어콘, 소량의 모나자이트 및 석류석 등이 있으며, 맥석광물로는 석영, K-장석, 사장석, 백운모, 보통각섬석, 녹염석, 녹니석 등이 있다. SIROQUANT 프로그램을 이용한 광물 정량분석 결과, 요동테이블 선별, 영구자석을 이용한 자력선별(rare-earth magnetic separation) 및 전자석 자력선별(Eddy current magnetic separation)로부터 회수한 유용광물인 티탄철석의 함량은 각각 0.8, 18.3, 48.7%로 증가되었다. 또한 원사, 1차 비중, 2차 비중, 1차 자력 및 2차 자력선별 산물 중 대표시료 및 중광물군에 대한 화학분석치로부터 재계산시, 티탄철석 및 모나자이트의 함량은 각각 0.23, 0.55, 5.22, 16.17, 44.99% 및 0.11, 0.02%, 0.16, 0.51, 1.19%로 증가하였다. 그러나 저어콘의 경우에는 0.13, 0.12, 0.11, 0.15, 0.10%로 큰 변화를 보이지 않았지만, 2차 비중선별시료 중 가장 미립인 -140 메시 입단의 경우 0.27%의 높은 값을 보임으로써 입도분리를 통한 선별 시, 회수율 증대가 기대된다.

Keywords

References

  1. 장세원, 김완태, 최헌수, 신희영, 이재천 (2005) 화학조성과 X-선 회절자료를 병용한 해사 정광의 광물정량. 한국지질자원연구원 논문집, 9, 17-34.
  2. Abdel-Rehim, A.M. (2005) A new technique for extracting zirconium form Egyptian zircon concentrate. Int. J. Miner. Process, 76, 234-243. https://doi.org/10.1016/j.minpro.2005.02.004
  3. Adel-Rehim, A.M. (2002) An innovative method for processing Egyptian monazite. Hydrometallurgy, 67, 9-18. https://doi.org/10.1016/S0304-386X(02)00134-2
  4. Bryan, I., Harding, D., Scott, I., and Hondros, J. (2006) Innovation road maps for Victoria's Earth Resources, Final Report. The STEM Partnership Pty Ltd, 144p.
  5. Buckley, R. (2007) Heavy Mineral Sand, Mineral Notes, State of Victoria, Department of Primary Industries, p.1.
  6. Christie, T. and Brathwaite, B. (2002) Mineral commodity report 16-Titanium, Institute of Geological and Nuclear Sciences Ltd. http://www.med.govt.nz/crownminerals/ minerals/docs/comreports/report16-titanium. pdf.
  7. Dill, H.G. (2007) Grain morphology of heavy minerals from marine and continental placer deposits with special reference to Fe-Ti oxides. Sed. Geol., 198, 1-27. https://doi.org/10.1016/j.sedgeo.2006.11.002
  8. Force, E.R. (1991) Geology of titanium-minerals deposits. Geol. Soc. Am. Spec. Paper, 259, 1-112. https://doi.org/10.1130/SPE259-p1
  9. Jayawardena, E.E.D.S. (1998) Asia pacific Ti-minerals distribution and potential. Ind. Min., 367, 99-107.
  10. Lee, D.S. (1987) Geologic map of Korea, In: Lee, D.S. (ed.), Geology of Korea, 1st ed., Geological Society of Korea, Kyohaksa Pub. Co, Separate Sheet.
  11. Meinhold, G. (2010) Rutile and its applications in earth sciences. Earth-Science Reviews, in press.
  12. Na, K.C. (1987) Precambrian Eonotherm. In: Lee, D.S. (ed.), Geology of Korea, 1st ed., Geological Society of Korea, Kyohaksa Pub. Co. 17-34.
  13. Premaratne W.A.P.J. and Rowson, N.A. (2003) The processing of beach sand from Sri Lanka for the recovery of titanium using magnetic separation. Physical Separation in Science and Engineering, 12, 13-22. https://doi.org/10.1080/1478647031000101232
  14. Rittman, A. and Nakha, F.M. (1958) Contribution to the study of Egyptian black sands. Egypt. J. Chem. 1, 127-135.
  15. Roy, P.S. (1999) Heavy mineral beach placers in southeastern Australia: their nature and genesis. Econ. Geol., 92, 567-588.
  16. Tauber, E. and James, R.J. (1971) Zircon and its uses. J. Aust. Ceram. Soc., 7, 27-30.
  17. USGS (2009) 2008 Minerals Yearbook: Zirconium and hafnium (advance release). USGS Geological Survey, 85.1-85.8.
  18. USGS (2010) 2007 Minerals Yearbook: Rare earths (advance release). USGS Geological Survey, 60.1-60.18.

Cited by

  1. Application of a Soil Separation System for the Remediation of Arsenic Contaminated Soil in a Metal Mining Area vol.18, pp.5, 2013, https://doi.org/10.7857/JSGE.2013.18.5.056
  2. Preliminary Study of Heavy Minerals in the Central Yellow Sea Mud vol.29, pp.1, 2016, https://doi.org/10.9727/jmsk.2016.29.1.1
  3. 황해남동니질대와 제주남서니질대 표층퇴적물의 중광물 특성 비교 연구 vol.30, pp.3, 2017, https://doi.org/10.9727/jmsk.2017.30.3.93