• Title/Summary/Keyword: 임플란트-지대주

Search Result 171, Processing Time 0.026 seconds

Finite element analysis on the connection types of abutment and fixture (수종의 내부연결형 임플란트에서 연결부의 형태에 따른 응력분포의 유한요소 분석)

  • Jung, Byeong-Hyeon;Lee, Gyeong-Je;Kang, Dong-Wan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.50 no.2
    • /
    • pp.119-127
    • /
    • 2012
  • Purpose: This study was performed to compare the stress distribution pattern of abutment-fixture connection area using 3-dimensional finite element model analysis when 5 different implant systems which have internal connection. Materials and methods: For the analysis, a finite element model of implant was designed to locate at first molar area. Stress distribution was observed when vertical load of 200 N was applied at several points on the occlusal surfaces of the implants, including center, points 1.5 mm, 3.0 mm away from center and oblique load of 200 N was applied $30^{\circ}$ inclined to the implant axis. The finite element model was analyzed by using of 3G. Author (PlassoTech, California, USA). Results: The DAS tech implant (internal step with no taper) showed more favorable stress distribution than other internally connected implants. AS compare to the situations when the loading was applied within the boundary of implants and an oblique loading was applied, it showed higher equivalent stress and equivalent elastic strain when the loading was applied beyond the boundary of implants. Regardless of loading condition, the abutments showed higher equivalent stress and equivalent elastic strain than the fixtures. Conclusion: When the occlusal contact is afforded, the distribution of stress varies depending on the design of connection area and the location of loading. More favorable stress distribution is expected when the contact load was applied within the diameter of fixtures and the DAS tech implant (internal step with no tapering) has more benefits than the other design of internally connected implants.

3-D Finite element stress analysis in screw-type, cement-type, and combined-type implant fixed partial denture designs (임플란트 상부보철물의 유지형태에 따른 3차원 유한요소 응력분석)

  • Lee, Sung-Chun;Kim, Seok-Gyu
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.4
    • /
    • pp.365-375
    • /
    • 2009
  • Statement of problems: Stress analysis on implant components of the combined screw- and cement-retained implant prosthesis has not investigated yet. Purpose: The purpose of this study was to assess the load distribution characteristics of implant prostheses with the different prosthodontic retention types, such as cement-type, screw-type and combined type by using 3-dimensional finite element analysis. Material and methods: A 3-dimensional finite element model was created in which two SS II implants (Osstem Co. Ltd.) were placed in the areas of the first premolar and the first molar in the mandible, and three-unit fixed partial dentures with four different retention types were fabricated on the two SS II implants. Model 1 was a cement-retained implant restoration made on two cement-retained type abutments (Comocta abutment; Osstem Co. Ltd.), and Model 2 was a screw-retained implant restoration made on the screw-retained type abutments (Octa abutment; Osstem Co. Ltd.). Model 3 was a combined type implant restoration made on the cement-retained type abutment (Comocta abutment) for the first molar and the screw-retained type abutment (Octa abutment) for the first premolar. Lastly, Model 4 was a combined type implant restoration made on the screw-retained type abutment (Octa abutment) for the first molar and the cement-retained type abutment (Comocta abutment) for the first premolar. Average masticatory force was applied on the central fossa in a vertical direction, and on the buccal cusp in a vertical and oblique direction for each model. Von-Mises stress patterns on alveolar bone, implant body, abutment, abutment screw, and prosthetic screw around implant prostheses were evaluated through 3-dimensional finite element analysis. Results: Model 2 showed the lowest von Mises stress. In all models, the von Mises stress distribution of cortical bone, cancellous bone and implant body showed the similar pattern. Regardless of loading conditions and type of abutment system, the stress of bone was concentrated on the cortical bone. The von-Mises stress on abutment, abutment screw, and prosthetic screw showed the lower values for the screw-retained type abutment than for the cement-retained type abutment regardless of the model type. There was little reciprocal effect of the abutment system between the molar and the premolar position. For all models, buccal cusp oblique loading caused the largest stress, followed by buccal cusp vertical loading and center vertical loading. Conclusion: Within the limitation of the FEA study, the combined type implant prosthesis did not demonstrate more stress around implant components than the cement type implant prosthesis. Under the assumption of ideal passive fit, the screw-type implant prosthesis showed the east stress around implant components.

Effect of cyclic loading on axial displacement of abutment into implant with internal tapered connection: a pilot study (내측연결형 임플란트에 체결한 지대주의 수직침하에 대하여 반복하중이 미치는 영향)

  • Seol, Hyon-Woo;Heo, Seong-Joo;Koak, Jai-Young;Kim, Seong-Kyun;Han, Chong-Hyun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.51 no.4
    • /
    • pp.315-322
    • /
    • 2013
  • Purpose: To evaluate the axial displacement of implant-abutment assembly after cyclic loading in internal tapered connection system. Materials and methods: External butt-joint connection implant and internal tapered connection implant were connected with three types of abutment for cement-retained prostheses, i.e. external type abutment (Ext group), internal tapered 1-piece abutment (Int-1 group), and internal tapered 2-piece abutment (Int-2 group). For each group, 7 implants and abutments were used. The implantabutments assemblies were clamped into the implant holder for vertical loads. A dynamic cyclic loading was applied for $150{\pm}10N$ at a frequency of 4 Hz. The amount of axial displacement of the abutment into the implant was calculated at each cycle of 0, 5, 10, 50, 100, 1,000, 5,000, and 10,000. A repeated measures analysis of variance (ANOVA) for the overall effect of cyclic loading and the pattern analysis by linear mixed model were used for statistical analysis. Differences at P<.05 were considered statistically significant. Results: The mean axial displacement after 10,000 cycles were $0.714{\pm}0.488{\mu}m$ in Ext group, $5.286{\pm}1.604{\mu}m$ in Int-1 group, and $11.429{\pm}1.902{\mu}m$ in Int-2 group. In the pattern analysis, Int-1 and Int-2 group showed continuous axial displacement at 10,000 cycles. There was no declining pattern of axial displacement in the Ext group. Conclusion: The pattern of linear mixed model in Ext group showed no axial displacement. There were continuous axial displacements in abutment-implant assemblies in the Int-1 and Int-2 group at 10,000 cycles. More axial displacement was found in Int-2 group than in Int-1 group.

Mandibular 4 incisors implant restoration (하악 4전치 상실 시 임플란트 수복)

  • Park, Jong hyun
    • Journal of the Korean Academy of Esthetic Dentistry
    • /
    • v.31 no.2
    • /
    • pp.56-63
    • /
    • 2022
  • The mandibular 4 anterior incisor restoration has small teeth and a small space, so the choice of abutment is always a concern. The mandibular 4 anterior incisor extraction is caused by periodontal disease, interdental embrasure greatly open is advantageous of oral hygiene management. Try to make it small diameter with custom abutment, it is limited to the space for the screw. Rather than setting the post site of one body implant to a horizontal cross-section, it is advantageous to set it to a longitudinal cross-section, for interdental embrasure formation. When using an internal bone level implant, rather than using a two-piece abutment, using a one-piece abutment can more effectively secure space for interdental embrasure.

Detorque Values of Various Compatible Dental Implant Screws (호환 가능한 수종의 치과용 임플란트 나사의 풀림토크값에 대한 연구)

  • Lee, Ju-Ri;Lee, Dong-Hwan;Hwang, Jae-Woong;Choi, Jung-Han
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.26 no.3
    • /
    • pp.273-283
    • /
    • 2010
  • This study evaluated the effect of 3 different compatible screws on the detorque values in a multiple implant-supported superstructure and single implant abutments. An implant superstructure directly connected to 4 implants was screwed to 6 experimental dental stone casts made by acrylic resin splinted impressions, using 20 Ncm. The detorque values of screws were measured twice. Three compatible abutment screws used in this study were TorqTite screw, Gold-Tite screw, and, Titanium screw. And, using single implant abutments (GoldAdapt Engaging abutments), the detorque values of 3 different screws were measured twice on 2 implants of 5 experimental casts. According to statistical analysis of detorque values using mixed model at a .05 level of significance, no statistically significant differences among 3 different compatible screws were found in a multiple implant-supported superstructure (p>0.05). But, in single implant abutments, statistically significant differences among 3 different compatible screws were found (p=0.0175). The detorque values of TorqTite(p=0.0462) and Titanium(p=0.0348) screws were significantly higher than those of Gold-Tite screw, but no statisticantly significantlydifferences were found between TorqTite and Titanium screws(p>0.05). Therefore, various compatible screws showed significant effects on the detorque values for single implant abutment, but, showed no significant effects for a multiple implant-supported superstructure.

Fatigue fracture of different dental implant system under cyclic loading (반복하중에 따른 수종 임플란트의 피로파절에 관한 연구)

  • Park, Won-Ju;Cho, In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.4
    • /
    • pp.424-434
    • /
    • 2009
  • Statement of problem: Problems such as loosening and fractures of retained screws and fracture of implant fixture have been frequently reported in implant prosthesis. Purpose: Implant has weak mechanical properties against lateral loading compared to vertical occlusal loading, and therefore, stress analysis of implant fixture depending on its material and geometric features is needed. Material and methods: Total 28 of external hexed implants were divided into 7 of 4 groups; Group A (3i, FULL $OSSEOTITE^{(R)}$Implant), Group B (Nobelbiocare, $Br{\aa}nemark$ $System^{(R)}$Mk III Groovy RP), Group C (Neobiotec, $SinusQuick^{TM}$ EB), Group D (Osstem, US-II). The type III gold alloy prostheses were fabricated using adequate UCLA gold abutments. Fixture, abutment screw, and abutment were connected and cross-sectioned vertically. Hardness test was conducted using MXT-$\alpha$. For fatigue fracture test, with MTS 810, the specimens were loaded to the extent of 60-600 N until fracture occurred. The fracture pattern of abutment screw and fixture was observed under scanning electron microscope. A comparative study of stress distribution and fracture area of abutment screw and fixture was carried out through finite element analysis Results: 1. In Vicker's hardness test of abutment screw, the highest value was measured in group A and lowest value was measured in group D. 2. In all implant groups, implant fixture fractures occurred mainly at the 3-4th fixture thread valley where tensile stress was concentrated. When the fatigue life was compared, significant difference was found between the group A, B, C and D (P<.05). 3. The fracture patterns of group B and group D showed complex failure type, a fracture behavior including transverse and longitudinal failure patterns in both fixture and abutment screw. In Group A and C, however, the transverse failure of fixture was only observed. 4. The finite element analysis infers that a fatigue crack started at the fixture surface. Conclusion: The maximum tensile stress was found in the implant fixture at the level of cortical bone. The fatigue fracture occurred when the dead space of implant fixture coincides with jig surface where the maximum tensile stress was generated. To increase implant durability, prevention of surrounding bone resorption is important. However, if the bone resorption progresses to the level of dead space, the frequency of implant fracture would increase. Thus, proper management is needed.

Finite Element Analysis of Stress Distribution on Supporting Bone of Cement Retained Implant by Oblique Loading (경사하중에 따른 시멘트 유지형 임플란트 지지골의 유한요소법 응력 분포)

  • Lee, Myung-Kon
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.9
    • /
    • pp.343-349
    • /
    • 2014
  • The dental osseointegration implant should be enough to endure occlusion load and it's required to have efficient design and use of implant to disperse the stress into bones properly. Solidworks as a finite element analysis program for modeling and analysis of stress distribution was used for the research. The simple crown model was designed on applying conjoined condition with tightening torque of 20 Ncm of a abutment screw between a cement retained implant abutment and a fixture. A $45^{\circ}$ oblique loading from lingual to buccal side on buccal cusps of crown and performed finite element analysis by 100 N of external load. The results by a analysis for stress distribution of supporting bones of fixture were as below. The von Mises stress was concentrated on the upper side of supporting compact bone regardless of the diameters and lengths of fixture, and the efficiency result of stress reduction was increase of fixture's diameter than it's length. Therefore, it's effective to use wider fixture as possible to the conditions of supporting jaw bone.

A 10-year retrospective study on the risk factors affecting the success rate of internal connection implants after prosthetic restoration (내부연결 임플란트의 보철 수복 후 성공률에 미치는 위험요소에 관한 10년간의 후향적 연구)

  • Seoin Lee;Min-Jeong Kim
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.61 no.2
    • /
    • pp.113-124
    • /
    • 2023
  • Purpose. The purpose of this study is to help increase the success rate by analyzing the types and characteristics of implant prosthesis and the survival rate. Materials and methods. Among implants placed between 2011 and 2020 at Sanbon Dental Hospital, College of Dentistry, Wonkwang University, a case restored by a prosthetic surgeon was investigated for the characteristics and correlation of failure. The causes of failure were classified as failure of osseointegration, peri-implantitis, fixture fracture, abutment fracture, screw fracture, screw loosening, prosthesis fracture, and loss of prosthesis retention. Prosthetic method, cantilever presence, placement location, etc. were analyzed for their correlation with implant failure. Results analysis was derived through Chi-square test and Kaplan-Meier survival analysis using SPSS ver 25.0 (IBM, Chicago, IL, USA). Results. A total of 2587 implants were placed, of which 1141 implants were restored with Single Crown and 1446 implants with Fixed Partial Denture, and the cumulative survival rate was 88.1%. The success rate of SC was 86.2% (984) and the success rate of FPD was 89.6% (1295), showing statistically significant differences, among which factors that had significant differences were abutment fracture, screw fracture, and screw loosening (P < .05). Conclusion. As a result of the 10-year follow-up, more failures occurred due to biomechanical factors than biological factors. Further studies on the success of implants will be needed in the future.

Evaluation of fitness in implant screw as tightening torque in dental laboratory (기공실에서의 임플란트 토크값에 따른 적합도 평가)

  • Song, Young-Gyun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.31 no.4
    • /
    • pp.310-315
    • /
    • 2015
  • Purpose: The purpose of this study was to measure the tightening torque for dental implant in dental laboratory and to analyze of the effects of different tightening torque. Materials and Methods: The tightening torque for dental implant in dental laboratory were measured by digital torque gauge. The length of abutment and analog were measured as tightening torque of manufacturer's instructions and the measured value. And the data were statically analyzed. Results: The mean tightening torque of implant screw in dental laboratory was $1.563{\pm}0.332Ncm$. The external type implant system of total length were showing no significant differences but the internal type implant system had difference significant (P < 0.05) when compared with tightening torque. Conclusion: The implant prosthesis should be made under manufacturer's instructions especially as tightening torque of screw. For the fidelity of implant prosthesis, dental technician should learn how to use the torque gauge.

The use of zirconia hybrid abutment for the anterior esthetic restoration and anterior implant utilizing CAD/CAM technology (캐드캠 기능을 이용한 전치부 심미 수복 및 전치부 임플란트에서 지르코니아 링크 지대주(Hybrid abutment)의 사용)

  • Kim, Jongyub
    • Journal of the Korean Academy of Esthetic Dentistry
    • /
    • v.22 no.1
    • /
    • pp.9-21
    • /
    • 2013
  • Aesthetics means differ from cultures and times and also differ from each person's own thinking. But as a restorative dentist who works for esthetic areas, we need to have certain principles and rationale. Some functions in CAD/CAM looks very useful to match harmonious shape to adjacent teeth and also very effective and efficient when compare to the traditional laboratory technics. Also we will discuss about link abutment (Titanium-Zirconia abutment) which we need for dental implant placed anterior area where the soft tissue is thin.