• Title/Summary/Keyword: 임플란트의 직경

Search Result 100, Processing Time 0.034 seconds

Marginal bone loss between internal- and external- abutment connection type implants placed in the first molar area (제1대구치 위치에 식립된 단일 임플란트의 지대주 연결 유형에 따른 임플란트 주위골 흡수)

  • Seok-Hyun Lee;Eun-Woo Lee;Ha-Na Jung;Ok-Su Kim
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.39 no.1
    • /
    • pp.32-44
    • /
    • 2023
  • Purpose: The purpose of this study was to investigate the effect of implant connection type on marginal bone loss (MBL) and to analyze the factors that affect MBL. This study focuses on single implants planted in the upper and lower first molar area. Materials and Methods: A total of 87 implants from 68 patients were tracked for a period over 5 years. There were 57 external connection type (EC) implants and 30 internal connection type (IC) implants in 38 males and 30 females. The MBL and EA were measured from intraoral radiograph images taken after 5 years at most. Results: Significant difference in MBL between EC and IC type was observed in patients without GBR or diabetes. Patients without GBR exhibited an MBL of -0.065 ± 0.859 mm in EC type and -0.627 ± 0.639 mm in IC type (P = 0.025). Using multiple regression analysis, a statistically significant negative correlation was observed between MBL and conditions including implant-abutment connection type (β = -0.303), diabetes (β = -0.113), emergence angle > 30° (β = -0.234), and age (β = -0.776). Conclusion: Within this results, IC type implants had less MBL than EC type, and implant prosthesis with emergence angle over 30° showed greater MBL. To minimize the MBL of the implant and ensure implant stability, careful consideration should be given to the EA of implant prosthesis and its connection type.

Histomorphometric study of machined titanium implants and calcium phosphate coated titanium implants (Machined 티타늄 임플란트와 calcium phosphate coated 티타늄 임플란트의 조직형태계측학적 연구)

  • Kang, Hyun-Joo;Yang, Jae-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.48 no.2
    • /
    • pp.122-127
    • /
    • 2010
  • Purpose: The objective of this study was to investigate the effects of calcium phosphate coated titanium implant surface on bone response and implant stability at early stage of healing period of 3 weeks and later healing period of 6 weeks. Material and methods: A total of 24 machined, screw-shaped implants (Dentium Co., Ltd., Seoul, Korea) which dimensions were 3.3 mm in diameter and 5.0 mm in length, were used in this research. All implants (n = 24), made of commercially pure (grade IV) titanium, were divided into 2 groups. Twelve implants (n = 12) were machined without any surface modification (control). The test implants (n = 12) were anodized and coated with thin film (150nm) of calcium phosphate by electron-beam deposition. The implants were placed on the proximal surface of the rabbit tibiae. The bone to implant contact (BIC) ratios was evaluated after 3 and 6 weeks of implant insertion. Results: The BIC percentage of calcium phosphate coated implants ($70.8{\pm}18.9%$) was significantly higher than that of machined implants ($44.1{\pm}16.5%$) 3 weeks after implant insertion (P = 0.0264). However, there was no significant difference between the groups after 6 weeks of healing (P > .05). Conclusion: The histomorphometric evaluation of implant surface revealed that; 1. After 3 weeks early healing period, bone to implant contact (BIC) percentage of calcium phosphate coated implants (70.8%) was much greater than that of surface untreated machined implants (44.1%) with P = 0.0264. 2. After 6 weeks healing period, however, BIC percentage of calcium phosphate coated implants group (79.0%) was similar to the machined only implant group (78.6%). There was no statistical difference between two groups (P = 0.8074). 3. We found the significant deference between the control group and experimental group during the early healing period of 3 weeks. But no statistical difference was found between two groups during the later of 6 weeks.

Analysis of thermal changes in bone by various insertion torques with different implant designs (서로 다른 형태의 임플란트의 식립토크가 골에 미치는 열변화에 관한 연구)

  • Kim, Min-Ho;Yeo, In-Sung;Kim, Sung-Hun;Han, Jung-Seok;Lee, Jai-Bong;Yang, Jae-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.49 no.2
    • /
    • pp.168-176
    • /
    • 2011
  • Purpose: This study aims at investigating the influence of various insertion torques on thermal changes of bone. A proper insertion torque is derived based on the thermal analysis with two different implant designs. Materials and methods: For implant materials, bovine scapula bone of 15 - 20 mm thickness was cut into 35 mm by 40 - 50 mm pieces. Of these, the pieces having 2 - 3 mm thickness cortical bone were used as samples. Then, the half of the sample was immersed in a bath of $36.5^{\circ}C$ and the other half was exposed to ambient temperature of $25^{\circ}C$, so that the inner and surface temperatures reached $36.5^{\circ}C$ and $28^{\circ}C$, respectively. Two types of implants ($4.5{\times}10\;mm$ Br${\aa}$nemark type, $4.8{\times}10\;mm$ Microthread type) were inserted into bovine scapula bone and the temperature was measured by a thermocouple at 0.2 mm from the measuring point. Finite element method (FEM) was used to analyze the thermal changes at contacting surface assuming that the sample is a cube of $4\;cm{\times}4\;cm{\times}2\;cm$ and a layer up to 2 mm from the top is cortical bone and below is a cancellous bone. Boundary conditions were set on the basis of the shape of cavity after implants. SolidWorks was used as a CAD program with the help of Abaqus 6.9-1. Results: In the in-vitro experiment, the Microhead type implant gives a higher maximum temperature than that of the Br${\aa}$nemark type, which is attributed to high frictional heat that is associated with the implant shape. In both types, an Eriksson threshold was observed at torques of 50 Ncm (Br${\aa}$nemark) and 35 Ncm (Microthread type), respectively. Based on these findings, the Microthread type implant is more affected by insertion torques. Conclusion: This study demonstrate that a proper choice of insertion torque is important when using a specific type of implant. In particular, for the Microthread type implant, possible bone damage may be expected as a result of frictional heat, which compensates for initial high success rate of fixation. Therefore, the insertion torque should be adjusted for each implant design. Furthermore, the operation skills should be carefully chosen for each implant type and insertion torque.

Optimization of orthodontic microimplant thread design (교정용 마이크로 임플란트의 나사산 디자인 최적화)

  • Kim, Kwang-Duk;Yu, Won-Jae;Park, Hyo-Sang;Kyung, Hee-Moon;Kwon, Oh-Won
    • The korean journal of orthodontics
    • /
    • v.41 no.1
    • /
    • pp.25-35
    • /
    • 2011
  • Objective: The purpose of this study was to optimize the thread pattern of orthodontic microimplants. Methods: In search of an optimal thread for orthodontic microimplants, an objective function stability quotient (SQ) was built and solved which will help increase the stability and torsional strength of microimplants while reducing the bone damage during insertion. Selecting the AbsoAnchor SH1312-7 microimplant (Dentos Inc., Daegu, Korea) as a control, and using the thread height (h) and pitch (p) as design parameters, new thread designs with optimal combination of hand p combination were developed. Design soundness of the new threads were examined through insertion strain analyses using 3D finite element simulation, torque test, and clinical test. Results: Solving the function SQ, four new models with optimized thread designs were developed (h200p6, h225p7, h250p8, and h275p8). Finite element analysis has shown that these new designs may cause less bone damage during insertion. The torsional strength of two models h200p6 and h225p7 were significantly higher than the control. On the other hand, clinical test of models h200p6 and h250p8 had similar success rates when compared to the control. Conclusion: Overall, the new thread designs exhibited better performance than the control which indicated that the optimization methodology may be a useful tool when designing orthodontic microimplant threads.

Effect of Implant Length on the Immediate Loading at the Anterior Maxilla (즉시하중시 상악 전치부에 식립된 임플란트 길이 변화에 따른 응력 분포의 삼차원 유한요소 연구)

  • Lee, Joon-Seok;Kim, Myung-Joo;Kwon, Ho-Beom;Lim, Young-Jun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.25 no.3
    • /
    • pp.255-265
    • /
    • 2009
  • Recently many studies have been published on application of immediate loaded implants. However, the immediate loading protocol has not been well documented. The purpose of the present study was to evaluate the stress distribution between bone-implant interfaces and the effect of implant length in the anterior maxilla using 3 dimensional finite element analyses. The diameter 4.0 mm threaded type implants with different length(8.5 mm, 10.0 mm, 11.5 mm, 13.0 mm, 15.0 mm) were used in this study. The bone quality of anterior maxillary bone block was assumed to D3 bone. Bone-implant interfaces of immediately loaded implant were constructed using a contact element for simulating the non osseointegration status. For simplification of all the processing procedures, all of the material assumed to be homogenous, isotropic, and linearly elastic. The 178 N of static force was applied on the middle of the palatoincisal line angle of the abutment with $120^{\circ}$ angle to the long axis of abutment. Maximum von Mises stress were concentrated on the labial cortical bone of the implant neck area, especially at the cortical-cancellous bone interfaces. Compared the different length, highest peak stress value was observed at the 8.5 mm implants and the results indicated a tendency towards favorable stress distribution on the bone, when the length was increased. Presence of cortical bone was very important to immediate loading, and it appears that implants of a length more than 13 mm are preferable for immediate loading at the anterior maxilla.

Retrospective study of the $Implantium^{(R)}$ implant with a SLA surface and internal connection with microthreads (SLA 표면 처리와 미세나사선을 가진 내측 연결형의 국산 임플란트에 대한 후향적 연구)

  • Doh, Re-Mee;Moon, Hong-Suk;Shim, Jun-Sung;Lee, Keun-Woo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.2
    • /
    • pp.136-147
    • /
    • 2009
  • Statement of problem: Since the introduction of the concept of osseointegration in dental implants, high long-term success rates have been achieved. Though the use of dental implants have increased dramatically, there are few studies on domestic implants with clinical and objective long-term data. Purpose: The aim of this retrospective study was to provide long-term data on the $Implantium^{(R)}$ implant, which features a sandblasted and acid-etched surface and internal connection with microthreads. Material and methods: 106 $Implantium^{(R)}$ implants placed in 38 patients at Yonsei University Hospital were examined to determine the effect of various factors on implant success and marginal bone loss, through clinical and radiographic results during a 6 to 30 month period. Results: 1. Out of a total of 106 implants placed in 38 patients, one fixture was lost, resulting in a 99.1% cumulative survival rate. 2. Among the 96 implants which were observed throughout the study period, the survival rates were 97.0% in the maxilla and 100% in the mandible. The survival rate in the posterior regions was 98.9% and 100% in the anterior regions. 3. The mean bone loss during the first year after prosthesis placement was 0.17 mm, while the mean annual bone loss after the first year was 0.04 mm, which was statistically less than during the first year(P<.05). 4. There was no significant difference in marginal bone loss according to age during the first year(P>.05), but after the first year, the mean annual bone loss in patients above 50 years was significantly greater(P<.05) compared with patients under 50 years. 5. No significant difference in marginal bone loss was found according to the following factors: gender, jaw, location in the arch, type of implant(submerged or non-submerged), presence of bone grafts, type of prostheses, and type of opposing dentition(P<.05). Conclusion: Based on these results, the sole factor influencing marginal bone loss was age, while factors such as gender, jaw, location in the arch, type of implant, presence of bone grafts, type of prostheses and type of opposing dentition had no significant effect on bone loss. In the present study, the success rate of the $Implantium^{(R)}$ implant with a SLA surface and internal connection with microthreads was satisfactory up to a maximum 30 month period, and the marginal bone loss was in accord with the success criteria of dental implants.

A Literature Review on Implant Assisted Removable Partial Denture (임플란트를 이용한 국소의치에 관한 문헌고찰)

  • Lee, Ji-Hye;Kim, Dae-Gon;Park, Chan-Jin;Cho, Lee-Ra
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.28 no.2
    • /
    • pp.179-190
    • /
    • 2012
  • The installation of an implant in the distal extension area to assist a partial dentrue (IARPD) was used carefully in clinical situations. The purpose of this review on the IARPD is describing the concept, clinical results and guidelines of IARPD. For the review, a literature search was performed using the PubMed. The data from the literature suggest that the placement of the implants could improve function and patient satisfaction. In addition, IARPD reduced the residual ridge resorption. Longer and wider implant should be placed. Less than $15^{\circ}$ angulation may be not harmful. To prevent the loosening of the abutment, modified abutment or resilient attachment should be used. However, the connection method between the clasp retention and IARPD should be considered for long time success. Moreover, longitudinal clinical studies are required for evaluation of IARPD.

Cervical design effect of dental implant on stress distribution in crestal cortical bone studied by finite element analysis (유한요소법을 이용한 임플란트 경부 디자인이 골응력에 미치는 영향 분석)

  • Kim, Kyung-Tak;Jo, Kwang-Heon;Lee, Cheong-Hee;Yu, Won-Jae;Lee, Kyu-Bok
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.4
    • /
    • pp.385-393
    • /
    • 2009
  • Statement of problem: High stress concentration on the crestal cortical bone has been regraded as a major etiologic factor jeopardizing long term stability of endosseous implants. Purpose: To investigate if the design characteristics of crestal module, i.e. internal type, external type, and submerged type, affect stress distribution on the crestal cortical bone. Material and methods: A cylindrical shaped implant, 4.3 mm in diameter and 10 mm in length, with 3 different crestal modules, i.e. internal type, external type, and submerged type, were analysed. An axisymmetric scheme was used for finite elment formulation. A vertical load of 50 N and an oblique load of 50N acting at $45^{\circ}$ with the implant's long axis was applied. The peak crestal bone stress acting at the intersection of implant and crestal bone was compared. Results: Under vertical load, the crestal bone stress was high in the order of internal, external, and submerged types. Under the oblique loading condition, it was in the order of internal, submerged, and external types. Conclusion: Crestal module design was found to affect the level of the crestal bone stresses although the actual amount was not significant.

Influence of crestal module design on marginal bone stress around dental implant (임플란트 경부 디자인이 변연골 응력에 미치는 영향)

  • Lim, Jung-Yoel;Cho, Jin-Hyun;Jo, Kwang-Heon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.48 no.3
    • /
    • pp.224-231
    • /
    • 2010
  • Purpose: This study was to investigate how the crestal module design could affect the level of marginal bone stress around dental implant. Materials and methods: A submerged implant of 4.1 mm in diameter and 10 mm in length was selected as baseline model (Dentis Co., Daegu,Korea).A total of 5 experimental implants of different crestal modules were designed (Type I model : with microthread at the cervical 3 mm, Type II model : the same thread pattern as Type I but with a trans-gingival module, Type III model: the same thread pattern as the control model but with a trans-gingival module, Type IV model: one piece system with concave transgingival part, Type V model: equipped with beveled platform). Stress analysis was conducted with the use of axisy mmetric finite element modeling scheme. A force of 100 N was applied at 30 degrees from the implant axis. Results: Stress analysis has shown no stress concentration around the marginal bone for the control model. As compared to the control model, the stress levels of 0.2 mm areas away from the recorded implant were slightly lower in Type I and Type IV models, but higher in Type II, Type III and Type V models. As compared to 15.09 MPa around for the control model, the stress levels were 14.78 MPa, 18.39 MPa, 21.11 MPa, 14.63 MPa, 17.88 MPa in the cases of Type I, II, III, IV and V models. Conclusion: From these results, the conclusion was drawn that the microthread and the concavity with either crestal or trans-gingival modules maybe used in standard size dental implants to reduce marginal bone stress.

The influence of magnet on tissue healing after immediate implantation in fresh extraction sites in dogs (성견에서 발치 후 즉시 식립 임플란트에 설치한 자석이 주위 조직에 미치는 영향)

  • Yu, Seok-Min;Cho, In-Ho;Shin, Soo-Yeon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.4
    • /
    • pp.435-444
    • /
    • 2009
  • Statement of problem: The clinical use of electric and electomagnetic fields for fracture healing applications began in the early 1970s. Since then, several technologies have been developed and shown to promote healing of fractures. Developments of these devices have been aided in recent years by basic research and several well controlled clinical trials not only in the medical field but in dentistry. Purpose: The purpose of this study was to compare alveolar bone reduction following immediate implantation using implants onto which magnets were attached in fresh extracted sockets. Material and methods: Four mongrel dogs were involved. Full buccal and lingual mucoperiosteal flaps were elevated and third and fourth premolars of the mandible were removed. Implants with magnets and implants without magnets were installed in the fresh extracted sockets and after 3 months of healing the animals were sacrificed. The mandibles were dissected and each implant sites were sampled and processed for histological examination. Results: The marginal gaps that were present between the implant and walls of the sockets at the implantation stage disappeared in both groups as a result of bone fill and resorption of the bone crest. The buccal bone crests were located apical of its lingual counterparts. At the 12 week interval the mean of marginal bone resorption in the control group was significantly higher than that of the magnet group. The majority of specimens in magnet group presented early bone formation and less resorption of the buccal marginal bone compared to the control group. Conclusion: Within the limitations of this study, it could be concluded that implants with magnets attached in the early stages of implantation may provide more favorable conditions for early bone formation and reduce resorption and remodeling of marginal bone.