Browse > Article
http://dx.doi.org/10.4047/jkap.2009.47.4.385

Cervical design effect of dental implant on stress distribution in crestal cortical bone studied by finite element analysis  

Kim, Kyung-Tak (Department of Prosthodontics, School of Dentistry, Kyungpook National University)
Jo, Kwang-Heon (Department of Prosthodontics, School of Dentistry, Kyungpook National University)
Lee, Cheong-Hee (Department of Prosthodontics, School of Dentistry, Kyungpook National University)
Yu, Won-Jae (Department of Orthodontics, School of Dentistry, Kyungpook National University)
Lee, Kyu-Bok (Department of Prosthodontics, School of Dentistry, Kyungpook National University)
Publication Information
The Journal of Korean Academy of Prosthodontics / v.47, no.4, 2009 , pp. 385-393 More about this Journal
Abstract
Statement of problem: High stress concentration on the crestal cortical bone has been regraded as a major etiologic factor jeopardizing long term stability of endosseous implants. Purpose: To investigate if the design characteristics of crestal module, i.e. internal type, external type, and submerged type, affect stress distribution on the crestal cortical bone. Material and methods: A cylindrical shaped implant, 4.3 mm in diameter and 10 mm in length, with 3 different crestal modules, i.e. internal type, external type, and submerged type, were analysed. An axisymmetric scheme was used for finite elment formulation. A vertical load of 50 N and an oblique load of 50N acting at $45^{\circ}$ with the implant's long axis was applied. The peak crestal bone stress acting at the intersection of implant and crestal bone was compared. Results: Under vertical load, the crestal bone stress was high in the order of internal, external, and submerged types. Under the oblique loading condition, it was in the order of internal, submerged, and external types. Conclusion: Crestal module design was found to affect the level of the crestal bone stresses although the actual amount was not significant.
Keywords
Implant; Crestal module design; Finite element method;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Hoshaw SJ, Brunski JB, Cochran GVB. Mechanical loading of Br$\aa$nemark implants affects interfacial bone modeling and remodeling. Int J Oral & Maxillofac Implants 1994;9:345-60   ScienceOn
2 Isidor F. Loss of osseointegration caused by occlusal load of oral implants. A clinical and radiographic study in monkeys. Clin Oral Implants Res 1996;7:143-52   DOI   PUBMED   ScienceOn
3 Holmgren EP, Seckinger RJ, Kilgren LM, Mante F. Evaluating parameters of osseointegrated dental implants using finite element analysis-a two-dimensional comparative study examining the effects of implant diameter, implant shape, and load direction. J Oral Implantol 1998; 24:80-8   DOI   ScienceOn
4 Lim JY, Lee CH, Jo KH. A Finite Element Stress Analysis of the Bone aroung Implant following the Shape of Root Form Implant. J Korean Acad Implant Dent 2003;22:25-37
5 Lee JW, Lee CH, Jo KH. Finite element analysis of the stress distribution with load transfer characteristics of the implant/bone interface. J Korean Acad Implant Dent 2003; 22:49-56
6 Matsushita Y, Kitoh M, Mizuta K, Ikeda H, Suetsugu T. Two-dimensional FEM analysis of hydroxyapatite implants: diameter effects on stress distribution. J Oral Implantol 1990;16:6-11   PUBMED   ScienceOn
7 Palmer RM, Smith BJ, Palmer PJ, Floyd PD. A prospective study of Astra single tooth implants. Clin Oral Implants Res 1997;8:173-9   DOI   ScienceOn
8 Nordin T, J$\"{o}$nsson G, Nelvig P, Rasmusson L. The use of a conical fixture design for fixed partial prostheses. A preliminary report. Clin Oral Implants Res 1998;9:343-7   DOI   ScienceOn
9 Papavasiliou G, Kamposiora P, Bayne SC, Felton DA. Three-dimensional finite element analysis of stress-distribution around single tooth implants as a function of bony support, prosthesis type, and loading during function. J Prosthet Dent 1996;76:633-40   DOI   ScienceOn
10 Richter EJ. In vivo vertical forces on implants. Int J Oral Maxillofac Implants 1995;10:99-108   PUBMED   ScienceOn
11 Meijer HJ, Kuiper JH, Starmans FJ, Bosman F. Stress distribution around dental implants: influence of superstructure, length of implants, and height of mandible. J Prosthet Dent 1992;68:96-102   DOI   ScienceOn
12 Tada S, Stegaroiu R, Kitamura E, Miyakawa O, Kusakari H. Influence of implant design and bone quality on stress/strain distribution in bone around implants: a 3-dimensional finite element analysis. Int J Oral Maxillofac Implants 2003;18:357-68   PUBMED   ScienceOn
13 Hansson S, Werke M. The implant thread as a retention element in cortical bone: the effect of thread size and thread profile: a finite element study. J Biomech 2003;36:1247-58   DOI   ScienceOn
14 Yu W, Jang YJ, Kyung HM. Combined influence of implant diameter and alveolar ridge width on crestal bone stress: a quantitative approach. Int J Oral Maxillofac Implants 2009;24:88-95   PUBMED   ScienceOn
15 Park DY. Three dimensional Stress Analysis Around Osseointegrated Br$\aa$nemark Implant System Using An Axisymmetric Modelling Approach. MD Thesis, Kyungpook Nat Univ 2001
16 Meyer U, Joos U, Mythili J, Stamm, T, Hohoff A, Stratmann U, Wiesmann HP. Ultrastructural characterization of the implant/bone interface of immediately loaded dental implants. Biometerials 2004;25:1959-67   DOI   ScienceOn
17 Kitamura E, Stegaroiu R, Nomura S, Miyakawa O. Influence of marginal bone resorption on stress around an implant - a three - dimensional finite element analysis. J Oral Rehabil 2005; 32:279-86   DOI   ScienceOn
18 Kum YJ. Finite Element Analysis of the Influences of the Implant Diameter on the Cortical Bone Stresses. MD thesis, Department of Dentistry, Kyungpook Nat Univ 2004
19 Lekholm U, Zarb GA. Patient selection and preparation. In: Br$\aa$nemark PI, Zarb GA, Albrektsson T, eds. Tissue-integrated prostheses: osseointegration in clinical dentistry. Chicago: Quintessence; 1985, 199-209
20 Lindhe J, Berglundh T, Ericsson I, Liljenberg B, Marinello C. Experimental breakdown of peri-implant and periodontal tissues. A study in the beagle dog. Clin Oral Implants Res 1992;3:9-16   DOI   ScienceOn
21 Chun HJ, Cheong SY, Han JH, Heo SJ, Chung JP, Rhyu IC, Choi YC, Baik HK, Ku Y, Kim MH. Evaluation of design parameters of osseointegrated dental implants using finite element analysis. J Oral Rehabil 2002;29:565-74   DOI   ScienceOn
22 Isidor F. Loss of osseointegration caused by occlusal load of oral implants. A clinical and radiographic study in monkeys. Clin Oral Impl Res 1996;7:143-52   DOI   PUBMED   ScienceOn
23 Cha SB. Finite element approach to investigate the influence of the design configuration of the ITI solid implant on the bone stresses during the osseointegration process. MD thesis, Department of Dentistry, Kyungpook Nat Univ 2005
24 Frost HM. Bone's mechanostat: a 2003 update. Anat Rec 2003;275A:1081-101   DOI
25 Adell R, Lekholm U, Rockler B, Br$\aa$nemark PI, Lindhe J, Eriksson B, Sbordone L. Marginal tissue reactions at osseointegrated titanium fixtures (I). A 3-year longitudinal prospective study. Int J Oral Maxillofac Surg 1986;15:39-52   DOI   ScienceOn
26 Isidor F. Histological evaluation of peri-implant bone at implants subjected to occlusal overload or plaque accumulation. Clin Oral Implants Res 1997;8:1-9   DOI   PUBMED   ScienceOn
27 Jung ES, Jo KH, Lee CH. A finite element stress analysis of the bone around implant following cervical bone resorp tion, J Korean Acad Implant Dent 2003;22:38-48
28 Van Oosterwyck H, Duyck J, Vander Sloten J, Van der Perre G, De Cooman M, Lievens S, Puers R, Naert I. The influence of bone mechanical properties and implant fixation upon bone loading around oral implants. Clin Oral Implants Res 1998;9:407-18   DOI   ScienceOn
29 O'Mahony AM, Williams JL, Spencer P. Anisotropic elasticity of cortical and cancellous bone in the posterior mandible increases peri-implant stress and strain under oblique loading. Clin Oral Implants Res 2001;12:648-57   DOI   ScienceOn
30 Lee SH. Stress analysis with nonlinear modelling of the load transfer characteristics across the osseointegrated interfaces of dental implant. MD thesis, Department of Dentistry, Kyungpook Nat Univ 2002
31 Norton MR. Marginal bone levels at single tooth implants with a conical fixture design. The influence of surface macro - and microstructure. Clin Oral Implants Res 1998;9:91-9   DOI   PUBMED   ScienceOn
32 Becker W, Becker BE, Newman MG, Nyman S. Clinical and microbiologic findings that may contribute to dental implant failure. Int J Oral Maxillofac Implants 1990;5:31-8   PUBMED
33 Asaoka K, Kuwayama N, Okuno O, Miura I. Mechanical properties and biomechanical compatibility of porous titanium for dental implants. J Biomed Mater Res 1985;19:699-713   DOI   ScienceOn
34 Jemt T, Lekholm U, Adell R. Osseointegrated implants in the treatment of partially edentulous patients: a preliminary study on 876 consecutively placed fixtures. Int J Oral Maxillofac Implants 1989;4:211-7   PUBMED
35 Schou S, Holmstrup P, Reibel J, Juhl M, Hj{rting-Hansen E, Kornman KS. Ligature-induced marginal inflammation around osseointegrated implants and ankylosed teeth: stereologic and histologic observations in cynomolgus monkeys (Macaca fascicularis). J Periodontol 1993;64:529-37   DOI   PUBMED   ScienceOn
36 Vaillancourt H, Pilliar RM, McCammond D. Factors affecting crestal bone loss with dental implants partially covered with a porous coating: a finite element analysis. Int J Oral Maxillofac Implants 1996;11:351-9   PUBMED   ScienceOn
37 Quirynen M, Naert I, van Steenberghe D. Fixture design and overload influence marginal bone loss and fixture success in the Br$\aa$nemark system. Clin Oral Implants Res 1992;3:104-11   DOI   ScienceOn
38 Duyck J, Naert IE, Van Oosterwyck H, Van der Sloten J, De Cooman M, Lievens S, Puers B. Biomechanics of oral implants: a review of the literature. Technol Health Care 1997;5:253-73   PUBMED
39 Chang JM. Finite Element Approach to Investigate the Influence of the Jaw Bone Dimension on the Stresses Around the Root Analogue Dental Implant. MD thesis, Department of Dentistry, Kyungpook Nat Univ 2004