• Title/Summary/Keyword: 임계회전속도

Search Result 59, Processing Time 0.021 seconds

Numerical Simulation of Self-Compensating Dynamic Balancer in a Rotating Mechanism (수치해석을 통한 자기보상 동적균형기의 작동성 검토)

  • 이종길
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.1
    • /
    • pp.142-151
    • /
    • 1995
  • 회전체의 자동밸런싱을 위하여 고안된 자기보상 동적균형기는 홈이파인 원판에 강구와 저점성유체를 지닌 구조체이다. 유도된 운동방정식으로 부터 자기보상 동적균형기의 작동조건을 조사하기 우하여 수치해석을 통한 동 특성을 검토하였다. 수치해석의 결과에 근거하여 임계속도보다 높은 범위에서는 자기보상 동적균형기는 정상작동을 보여주었다. 임계속도에서는 회전계의 균형이 강구와 점성유체와의 감쇠계수에 의존하였으나 임계속도보다 낮은 범위에서는 어떠한 조건에 대해서도 작동하지 않음을 알 수 있었다. 자동차 및 항공기에도 응용가은한 자기보상 동적균형기의 작동조건들을 본 논문에서 예시하였다.

  • PDF

The Study of Milling Properties for Optimization of Treatment and Recycling of Converter Slag (제강슬래그 처리 및 재활용의 최적화를 위한 분쇄 특성에 관한 연구)

  • Kuh, Sung-Eun;Hwang, Kyoung-Jin;Kim, Dong-Su
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.6
    • /
    • pp.1139-1148
    • /
    • 2000
  • To treat and recycle a large quantity of converter slag. the milling properties of -14/ +24 mesh-sized slag has been considered. The optimal conditions in milling process were investigated for producing powder-type slag and the required consumption was derived for the economical grinding. The characteristics of milling processes were studied in the variation of the rotational speed, milling time, filling ratio of ball, and size and amount of feed. The grinding efficiency was also examined. The optimal rotational speed in this experimental condition was observed to be the value of 79% of critical speed. The extent of grinding was increased with increasing the grinding time. but the efficiency of milling was decreased with the time. 50% ball filling was shown to have the optimal grinding effect, and less amount and small-sized feed made the milling efficiency high. As the result, using Bond's equation, power required for efficient milling was considered and the highest value was observed in the condition of high grinding time and optimal rotational speed.

  • PDF

Rotordynamic Analysis of a High Thrust Liquid Rocket Engine Turbopump (고추력 액체 로켓 엔진용 터보펌프의 회전체동역학 해석)

  • Jeon, Seong-Min;Kwak, Hyun-Duck;Yoon, Suk-Hwan;Kim, Jin-Han
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.7
    • /
    • pp.688-694
    • /
    • 2008
  • A rotordynamic analysis is performed for a high thrust class liquid rocket engine turbopump considering the dynamic characteristics of ball bearings and pump noncontact seals. Complex eigenvalue problems are solved to predict the rotating natural frequencies and damping ratios as a function of rotating speeds. Synchronous rotor mass unbalance response and time transient response analyses are also performed to figure out the rotor critical speed and the onset speed of instability. From the numerical analysis, it is found that the rear bearing stiffness is most important parameter for the critical speed and instability because the 1st mode is turbine side shaft bending mode. The pump seal effect on the critical speed is enlarged as the rear bearing stiffness decreases and the front bearing stiffness increases.

Critical Speed Analysis of a 75 Ton Class Liquid Rocket Engine Turbopump due to Load Characteristics (75톤급 액체로켓엔진 터보펌프의 하중 특성에 따른 임계속도 해석)

  • Jeon, Seong-Min;Kwak, Hyun-D.;Hong, Soon-Sam;Kim, Jin-Han
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.22-29
    • /
    • 2011
  • Critical speed of high thrust liquid rocket engine turbopump is obtained through a rotordynamic analysis and a unloaded turbopump test is peformed for validation of the numerical model. The first critical speed predicted by the numerical analysis is correlated well with the test result for the bearing unloaded rotor condition only considering mass unbalance load. Using the previous rotordynamic model, critical speed variation is estimated as a function of varied bearing stiffness due to pump and turbine radial loads with relative angle difference. From the numerical analysis, it is found that the relative angle difference of pump and turbine radial loads greatly affects the critical speed. However, additional axial load reduces the effect derived from the relative angle difference of radial loads.

  • PDF

Critical Speed Analysis of a 75 Ton Class Liquid Rocket Engine Turbopump due to Load Characteristics (75톤급 액체로켓엔진 터보펌프의 하중 특성에 따른 임계속도 해석)

  • Jeon, Seong-Min;Kwak, Hyun-D.;Hong, Soon-Sam;Kim, Jin-Han
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.4
    • /
    • pp.42-49
    • /
    • 2012
  • Critical speed of high thrust liquid rocket engine turbopump is obtained through a rotordynamic analysis and a unloaded turbopump test is peformed for validation of the numerical model. The first critical speed predicted by the numerical analysis is correlated well with the test result for the bearing unloaded rotor condition only considering mass unbalance load. Using the previous rotordynamic model, critical speed variation is estimated as a function of varied bearing stiffness due to pump and turbine radial loads with relative angle difference. From the numerical analysis, it is found that the relative angle difference of pump and turbine radial loads greatly affects the critical speed. However, additional axial load reduces the effect derived from the relative angle difference of radial loads.

A Study on the Vibration of Rotordynamic System Structured Rotor-Bearing and Rotor-Bearing-Stator (로터-베어링/로터-베어링-스테이터로 구성된 회전체 진동에 관한 연구)

  • 주성현;김광식;김창호;이성철
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1990.10a
    • /
    • pp.173-178
    • /
    • 1990
  • 로터-베어링축계는 증기및 가스터빈, 터보 발전기, 압축기등 거의 모든 산업 기계류에서 동력 전달의 기본 도구로써 사용되고 있다. 즉 회전에 의한 동력 의전달은 비교적 간단히 대용량의 동력을 효율적으로 전달할 수 있다. 이에 따라 회전기계류에 대한 연구는 산업 혁명 이후 꾸준히 발전되어 온바, 특히 근래에 들어와 산업기계류의 경쟁이 치열하여짐에 따라 산업기계류의 고정 밀화, 고속화, 고신뢰화 요구가 증대하고 있는 현실을 비추어 볼때, 산업 기 계류의 근간을 이루고 있는 로터-베어링 축계의 안정성을 포함한 진동에 관 한 문제는 회전기계류 설계의 주요 기술로써 연구.개발의 필요성이 매우 높 다 하겠다. 회전축계 진동 관련 연구는 두 분야로 대별될 수 있는데 언밸런 스(Unbalance)에 의한 Synchronous진동과 여러가지 원인에 의해 계의 불안 정성을 유발시키는 Nonsynchronous진동으로 나눌 수 있다. 본 연구에서는 이들 연구의 기본이 되는 회전축-베어링계 동특성 해석 프로그램을 개발하 였다. 여러가지 방법이 있으나 여기서는 Holzer가 비틀림 진동에 적용하고, Mykiestad(2)와 Prohl(3)에 의하여 회전축의 횡 진동에 적용된 이후 Lund(4) 등에 의하여 베어링의 영향등이 첨가된 전달 매트릭스 (Transfer Matrix) 방 법을 이용하여 임계속도(Critical Speed), 모우드 형태(Mode shapes)를 예측 하고 불안정 판정(Instability Criteria)등을 할 수 있는 프로그램을 개발하였 다. 특히 Murphy(1)의 다항식 방법(Polynomial Method)에 기본을 두어 기존 의 전달 매트릭스가 가지고 있던 반복, 수렴 시간 문제와 빠뜨리는 임계속도 예측에 대한 개선을 이루었으며 기존 논문과 실험 결과와의 비교 검토를 통 하여 개발된 프로그램의 신뢰성을 검토하였다. 특히, 각종 회전 기계의 소형 화, 경량화 추세에 따라 지반이나 케이싱이 경량이거나 유연하여 회전축과 동적으로 연성된 경우 회전축-베어링-지반으로 이루어진 2중구조의 회전축 계 동특성을 해석할 수 있는 프로그램을 개발하므로서 회전 기계류의 진동 전반에 걸친 문제점에 대한 그 원인과 현상을 명확히 분석하여 국내의 전기 계류의 보다 신뢰성있는 설계 및 제작자료를 확보하는데 기여할 수 있게 하 였다.

  • PDF

Vibration Analysis and Critical Speeds of Rotating Polar Orthotropic Disks, Part II : Analysis Results (극직교 이방성 회전원판의 진동해석 및 임계속도, II : 해석결과)

  • Koo, Kyo-Nam
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.3 s.108
    • /
    • pp.247-254
    • /
    • 2006
  • This paper (Part II) provides the application results of the method presented in a companion paper (Part I) where the dynamic equation for rotating polar orthotropic disk is formulated and its solution method is considered. The natural frequencies and critical speed of polycarbonate CD are calculated to validate the present method and are shown to by very accurate. The critical speeds of typical GFRP and CFRP CD's are computed by aligning the fibers in radial and circumferential directions. The radially reinforced CFRP CD is shown to have the five times higher critical speed than that of the polycarbonate CD. The natural frequencies and critical speeds of disks with various elastic modulus ratios are obtained. The results show that the radially reinforced disk is more effective in increasing critical speed than the circumferentially reinforced disk.

Vibration Analysis and Critical Speeds of Rotating Polar Orthotropic Disks, Part I : Formulation and Solution Method (극직교 이방성 회전원판의 진동해석 및 임계속도 I : 정식화 및 해법)

  • Koo, Kyo-Nam
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.2 s.107
    • /
    • pp.169-175
    • /
    • 2006
  • Rotating annular disks are widely used in data storage devices such as CDs, DVDs(digital versatile disks), and HDs(hard disks). Higher data transfer rate in data storage disks could not be achieved by polycarbonate disks in the present market. The problem can be solved by applying the fiber-reinforce composite materials to the disks. In this paper, an application of composite materials to rotating disks is proposed to increase the critical speed. Dynamic equation is formulated in order to calculate the natural frequency and critical speed for rotating composite disks by the Galerkin method. The orthogonal functions are used in series solution. A companion paper(Part II) presents and discusses the numerical results of vibration analysis and critical speed for rotating polar orthotropic disk using the formulation and solution method given in this paper (Part I).

Vibration Analysis and Critical Speeds of Rotating Polar Orthoropic Disks (극직교 이방성 회전원판의 진동특성 및 임계속도)

  • Koo, Kyo-Nam;Han, Jae-Heung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.337-340
    • /
    • 2005
  • Rotating annular disks are widely used in data storage devices such as CDs, DVDs(digital versatile disks), and HDs(hard disks). Higher data transfer rate in data storage disks could not be achieved by polycarbonate disks in the present market. The problem can be solved by applying the fiber-reinforce composite materials to the disks. In this paper, an application of composite materials to rotating disks is proposed to increase the critical speed. Dynamic equation is formulated in order to calculate the natural frequency and critical speed for rotating composite by the Galerkin method. The results show that the radially reinforced disk is more effective in increasing critical speed than the circumferentially reinforced disk.

  • PDF

Dynamic Characteristics of Thick Rotating Composite Disks (두꺼운 복합재료 회전원판의 동적 특성)

  • Koo, Kyo-Nam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.8
    • /
    • pp.649-656
    • /
    • 2016
  • Thick composite disks are utilized in the fast-rotating machines such as turbine disks, flywheels, and so on. The effects of rotating speed on the dynamic characteristics of thick composite disks are deeply studied in this paper. The dynamic governing equations of a rotating composite disk including transverse shear and rotary inertia are derived and then formulated into the finite element equation. Isotropic, circumferentially reinforced disk, and radially reinforced disk are selected for the numerical analysis. The inclusion of the transverse shear and rotary inertia into the governing equation of the rotating disks makes the natural frequency reduced as well as the critical speed. The present results show that the rotation of a thick disk may not reduce the effect of transverse shear and rotary inertia depending on anisotropy, thickness ratio and mode, unlike the results reported in other studies.