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1. Introduction

The unbalance in the rotors of rotating
machinery causes vibrations and generates
undesirable forces. These forces are transmit-
ted to the machine parts and it may cause
damage to the whole system. Generally, this
unbalance is a result of unavoidable imperfec-
tions in rotor manufacture and assembly.
Therefore, the balancing of rotors is clearly
important and is accepted as a fundamental
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requirement for the normal operation of mod-
ern low and high speed rotating machines.

The idea of an automatic dynamic balancer,
or Self-Compensating Dynamic Balancer
(SCDB), has been proposed, in many forms
and applications, through numerous patents to
eliminate the need for balancing and yet min-
imize the effects of rotor unbalance and
vibratory forces on the rotating system during
normal operation. The automatic dynamic bal-
ancer is usually composed of a circular disk
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with a groove, or race, containing spherical or
cylindrical weights and a low viscosity damp-
ing fluid, although early attempts used other
approaches, This idea is claimed to be applica-
ble for many applications, ranging from space
vehicle components, to washing machines. The
purpose of this paper is to develop a numeri-
cal understanding of the motion of the
weights in SCDB and how this limits the oper-
ation.

2. Mathematical Model for Numerical Sim-
ulation

A rotating unbalanced disk with a SCDB
and supported by springs is shown in Fig. 1,
The rotating disk is of mass M and the SCDB
balls are each of mass m. The point C repre-
sents the deflected centerline of the rotating
system, and the point G represents the loca-
tion of the mass center of the disk, not
including the SCDB balls. Because of imper-
fections in the disk, its mass center G is
located a distance € from the disk's geometric
center at C. Assume that the center C of the
disk is located at the origin O of the XYZ
axes when the supporting springs are unde-
flected. The equations of motion of this sys-
tem can be derived by the Lagrangian

Fig. 1 Rotating system of the SCDB
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Fig. 2 Self-Compensating Dynamic Balancer

method, For a circular shaft it is logical to
assume that the stiffness, k, and the damping
of the shaft, ¢, are the same regardless of the
orientation of the shaft, Therefore, a scalar
Lagrangian function, L, is

L= %I;ﬁz +%M[}'{2 +¥? = 2eyXsiny + £

+2£¢Ycosw] + %2 (m,. + %’"i)

{X’2 +¥? +(¢'5‘. +1,1))2R2 ~2R(q5i +1,[;)

[X sin(qbi + w) - YCOS(¢1‘ +y )]}
1

-Ek(xﬁ +Y?)

®

where, gravitational effects have been
ignored. Iz is mass moment of inertia of the
disk. If the angular velocity of the disk is
constant, then ¢ =04 =w and ¥ =t where,
@ is a rotation speed of the shaft. The euga-
tions of motion for the shaft and the two
balls are
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When a differential equation cannot be
integrated in closed form, numerical methods
must be employed. This may well be the case
when the system is nonlinear or if the system
is excited by a force that cannot be expressed
by simple analytic functions. Consider the
rotating system consisted of a single 3CDB,
which has two steel balls, mounted on the
midspan of rotating shaft. If we assume the
shaft rotates at constant speed, regardless of
what method may be used to numerically
integrate the equations, the first step is to
transform the given second order equations,
(2), to a system of first order equations. To
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develop a procedure which can be easily used
for a computer solution, let
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the velocities axe obtained as
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dt
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de | _ |4 (3b)
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and the accelerations are obtained as

]
dt %
dy, 5
el 17 (30)
dye | (¢
é
dy | M
| dr |

Second order equations, (2), can be trans-
formed into a system of first order equations
and then solved using the Runge-Kutta
method. It can be seen that dy, dy, dy,

dt’de’ dt’

and dy, can be obtained by transforming the
dr

original differential equations, (2), into four

simultaneous first order differential equations

using equation (8). It is convenient to express



A dgeEA] 129 A 15 (19954 19)

the equations (2) using matrix form as

=
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a, 0 a, a, Therefore, these four derivatives can be

obtained as
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describing the system. The Runge-Kutta com-

putation procedure is popular since it is self-

starting and results in good accuracy. To
obtain a numerical solution, the mathematical
model, (5) plus (3b), is programmed on a digi-
tal computer using FORTRAN program lan-
guage. To numerically model the system para-
meters must assigned numerical values, The
values chosen are

%m.oos, %=.001, and B=2(or 5  (6a)

with initial ball positions:57° and 115°

(or174° and 186°) (6b)

The initial positions of the balls should have
no influence on the final solution, but in

numerical simulations these are necessary.
3. Operating above Critical Speed

Fig. 3 to 6 show the results of a computer
simulation with two balls. Fig. 3 and 5 show
the normalized displacement, X/R, of the sys-
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Fig. 3 Normalized displacement of the rotating sys-
tem above the first critical speed (Run con-
ditions:m/M = .005, &/R=.001, B=2, and w/w=
15
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Fig. 4 Angular position of the two balls above the
first critical speed(Run conditions:m/M
=.005,€/R=.001, B=2, #1(0)=57, #2(0)=115,
and @/ =1 5)
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Fig. 5 Normalized displacement of the rotating sys-
temn above the first eritical speed (Run con-
ditions:m/M = .005, &R =.001, £ =2, and v/u=
2)

tem with two balls, These plot show a rapid
reduction in unbalance excursions with time
and no imbalance after the transient decays.
Fig. 4 and Fig. 6 show angular positions, §.
(=y5) and #.(=y;), of the two balls as a
function of time, These plots illustrate that
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Fig. 6 Angular position of the two balls above the
first critical
speed (Runconditions:m/M =, 005, &R-=.001,8
=2, $1(0)=57, $2(0)=115, and /e =2)

when the rotating system is balanced the two
balls are approximately positioned at 180
degrees(on the opposite side .of the center of
gravity of the disk) in agreement with the
result of operating without balls. The angular
velocity of the disk, ¢, was considered con-
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Fig. 7 Normalized displacement of the rotating sys-
tem without balls at the first critical
speed (Run conditions: e/e=1,0)
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Fig. 8 X vs. Y direction displacement of the rotat-
ing system without balls at the first critical
speed (Run conditions: w/e =1.0)

0.08

stant.
4, Operating at Critical Speed .

Figures 7 to 12 show results of coﬁlputer
simulations at the critical speed. Figure 7 and
8 are plots of the motion of an unbalanced
system confaining no balls. The straight line

NORMALIZED MSPLACEMENT

-0.08 —
0‘24551?17“101520
TIME (SEC

Fig. 9 Normalized displacement of the rotating sys-
temn at the first critical speed (Run condi-
tlons: m/M = .005,¢/R=.001,8=2, and w/u=1.()
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Fig. 10 Angular position of the two balls at the
first critical speed(Run conditions: m/M
=.005, ¢/R=001,8=2, ¢1(0)=57, #2(0)=115,
and v/u=1.0)
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Fig. 11 Normalized displacement of the rotating
system at the first critical speed (Run con-
ditions:m/M =, 005, €/R=.001, f=5, and @/u =
1.0)
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segments in Fig. 8 result from the time inter-
val that was chosen. If the time step
decreased, the shape will be changed to circle.
This figure illustrates that with no balls, the
rotating system vibrates with a constant
amplitude after the transient decayed. The
angular velocity of the disk was considered as
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Fig. 12 Angular position of the two balls at the
first eritical spsed(Run cenditions:m/M =
.005, €/R=.001, p=5, #$1(0)=517, #2(0)=115,
and w/u.=1.0)

a constant, Fig. 9 is a plot of the normalized
displacement of the system, X/R, with two
balls at critical speed. In this figure, the
ratating system js not balanced by the two
balls. Fig. 10 is a plot of angular position of
the two balls at the first critical speed for 8
= 2, Fig. 10 shows that one of the two balls
rotates around the race of SCDB with some
angular velocity. Note that in these simula-
tion the balls can pass each other. Fig. 11
and 12 show that increasing the damping
coefficient, B, to 5, makes the system balance,
Fig. 12 illustrates that when the rotating sys-
tem operates at critical speed with larger vis-
cous damping, the two steel balls are approxi-
mately positionied at 180 degrees. In this case
large viscous damping can balance the system,

5. Operating befow Critical Speed
Fig.s 13 to 18 show results of computer sim-

ulations below the critical speed. The angular
velocity of the disk is considered as a con-



gaAdFEdA AL2W A1E (19954 14)

—0.08 ! 3 ! ) 1 1 =

a 3 10 1@1“2?“&5 30 W

Fig. 13 Normalized displacement of the rotating
system below the first critical speed (Run
conditions: m/M =,005, &R=001, £=2, and

w/w,=7)
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Fig. 14 Angular position of the two balls below the

first critical speed(Run conditions:m/M =
005, ¢/R=.001,/-2, $1(0)=57, #2(0)=115, and
w/mnz -7

stant. Fig. 13 is a plot of the normalized dis-
placement, X/R, of the system with two balls,
Fig. 14 is a plot of the angular position of the
two balls below the critical speed. This figure
illustrates that when the rotating system
operates below the critical speed the two steel
balls are approximately positioned at zero

degrees. This means that the two balls move
toward the center of gravity side of the disk.
In this case the two balls can not balance the
system. To invesitigate stability of the sys~
tem, different initial conditions, 174 and 186
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Fig. 15 Normalized displacement of the rotating
system below the first critical speed(Run
conditions:m/M = .005, &/R=001, f=2, ¢
1(0)=174, $2(0)=186, and v/u.= - 7)
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Fig. 16 Angular position of the two balls below the
first critical speed(Run conditions: m/M =
.005, &/R=001, B=2, $1{0)=174, #2(0)=186
and w/e =7}
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Fig. 17 Normalized displacement of the rotating
system below the first critical speed(Run
conditions:m/M = .005, &/R=.001, £=5, ¢
1{(0)=174, #2(0)=186 and e/u=-7)
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Fig. 18 Normalized displacement of the rotating
system without balls below the first criti-
cal speed (Run conditions: w/w,=+7)

degree(these two initial positions can balance
the system), are considered. The results are
shown in Fig, 15 and 16. Below critical speed,
Fig. 15 shows that even if the balls initially
balance the system they do not remain in that
position, With larger damping coefficient (8
= 5), Fig. 17, the amplitude of the system is
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reduced compared to the case of #=2 TFig. 18
shows a plot of the normalized displacement of
the system with no balls.

6. Conclusions

In the limited computer simulations that
have been presently carried out, several con-
clusions have been found. Above critical
gpeed, the balls can balance the rotating disk
with small damping between ball and race. At
critical speed, the equilibrium of the system is
depend on damping coefficient 8. Large damp-
ing can balance the system. Below critical
speed, the balls do not balance the system in
any case.

To be credible, the SCDB must have, in
addition to numerical appeal, demonstrated
practical appeal, For a long, slender body,
and non-uniform shaft, the dynamic unbal-
ance cannot be compensated for by a single
SCDB. Further study of this Self-Compen-
satins Dynamic Balancer for a nonuniform
rotating system with variable rotating speed
and the effect of # on stability for multiple
balls should be done in the Future.
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