• Title/Summary/Keyword: 일정변형율 압밀

Search Result 8, Processing Time 0.028 seconds

Study on the Consolidation Characteristics of Marine Clay by CRS and Conventional Tests (일정변헝률 및 표준압밀시험을 이용한 해성점토의 압밀특성 연구)

  • Lee, U-Jin;Im, Hyeong-Deok;Lee, Won-Je
    • Geotechnical Engineering
    • /
    • v.14 no.4
    • /
    • pp.47-60
    • /
    • 1998
  • A series of conventional tests and CRS consolidation tests with different rates of strain were performed to investigate the consolidation characteristics of marine clay. Preconsolidation pressures were evaluated by applying previously proposed methods for both the conventional tests and CRS tests results in order to check the legitimacy of those methods. The effects of strain rate on effective consolidation stress strain relationship, porewater pressure, and preconsolidation pressure were also discussed It was found that the effective stress strain relationship and the preconsolidation pressure are a function of strain rate imposed during consolidation test, but compression index isn't. The preconsolidation pressure ratio ($a_2=\sigma'_{pCRS}/\sigma'_{pConv}$)of marine clay appears proportional to the logarithm of strain rate, with average values ranging from 1.11 to 1.30 for strain rates between $1\timesx10^{-4} %/sec\; and\; 4\times10 %/sec$. The porewater pressure ratio during CRS teats does not exceed 6.0% except when the strain rate is $6.67\times10^{-4} %/sec$. Coefficient of consolidation or coefficient of permeability at normally consolidated range was not affected by the type of consolidation tests and the strain rate. Typical values of compression index (C.), coefficient of consolidation(c.), and coefficient of permeability (k.) at normally consolidated range were 0.56-0.95, $0.56\times10^{-4}~3.0\times10^{-4}cm2/sec,\; and\; 2.0\times10^{-8}~7.0\time10^{-4}cm/sec,$ respectively.

  • PDF

Constant Rate of Strain Consolidation Test for Radially Inward Drainage (일정변형률 압밀시험을 이용한 방사 내측배수 압밀해석)

  • Yune, Chan-Young;Chung, Choong-Ki;Yang, Bong-Keun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5C
    • /
    • pp.333-342
    • /
    • 2006
  • In this study, a consolidometer for radially inward drainage under constant rate of strain (CRS) loading was developed. Their analytical solutions for evaluating consolidation characteristics of soils were also derived. With reconstituted kaolinite samples, comparative tests of the developed CRS loading consolidation in radially inward drainage together with incremental loading (IL) consolidation in radially inward, vertical and radially outward drainages and CRS loading consolidation in radially outward and vertical drainages were carried out. From the test results, It is confirmed that the results of the developed consolidometer were not only in good agreement with those of other consolidation tests but also they were more stable and reliable with less sample disturbance effect.

Thermal Conductivity Measurement of Saturated Clayey Mixtures using Oedometer Consolidation and Constant Rate of Strain Consolidation Tests (표준압밀시험 및 일정변형율 압밀시험 결과를 이용한 포화된 혼합 점성토의 열전도계수 측정에 관한 실험적 연구)

  • Kim, HakSeung;Kwon, HyungSeok;Lee, Jangguen;Cho, Nam Jun;Kim, Hyun-Ki
    • The Journal of Engineering Geology
    • /
    • v.22 no.3
    • /
    • pp.275-281
    • /
    • 2012
  • Thermal distribution in soils must be considered in engineering designs and constructions, including estimates of frost heave and thaw settlement, infrastructure in cold regions, and geothermal systems. Because thermal conductivity is a key parameter for evaluation of thermal distribution in soils, it must be accurately estimated. The thermal conductivity of fine-grained soils has been widely studied in recent years; however, few studies have reported a reliable method for experimental measurement. The present study presents the results of an experimental investigation of the thermal conductivity of a saturated kaolinite-silica mixture with respect to the variation of dry density. Thermal conductivities were measured in Constant Rate of Strain (CRS) consolidation tests, and the experimental data were analyzed to evaluate the accuracy of the new measurement system. In addition, we present an evaluation method for predicting thermal conductivity in fine-grained soils.

The Effect of Preloading to Reinforced Clay (선행하중이 보강점성토에 미치는 효과)

  • ;Tatsuoka, Fumio
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.5
    • /
    • pp.19-25
    • /
    • 2000
  • 배수성과 인장강성을 가지는 복합 보강재를 사용하여 보강한 포화점성토의 거동에 선행하중이 미치는 영향을 조사하기위하여 평면변형을 시험을 수행하였다. 보강하지 않은 공시체와 보강한 공시체에 대하여 이방압밀(K=0.3, σ3'=50kPa)을 실시하고 비배수 및 배수전단시험을 일정변형율 속도를 실시하였다. 선행하중을 가한 시험의 경우는 이방압밀후 소정의 선행하중을 가하여 크리이프, 제하, 에이징 후에 비배수 전단시험을 실시하였다. 시험결과 분석한 결과 포화전성성토와 같이 연약한 토질이라도 다짐을 잘하고 보강토의 큰 배수압툭강도를 이용하여 큰 배수압축강도를 이용하여 큰 선행하중을 가하여 과압밀 상태로 함으로써 비배수 전단시에 큰 초기강성을 가지는 것을 알수 있었다. 즉, 점성토의 보강토의 경우 보강에 의한 배수강도의 증가는 큰 선행하중을 가하기 위하여 사용하는 것이 가장 효율적인 것으로 판단된다.

  • PDF

Characteristics of Dynamic Parameter of Sandy Soil According to Grout Injection Ratio (그라우트 주입율 변화에 따른 사질토의 동적계수 특성)

  • Ahn, Kwangkuk;Park, Junyoung;Oh, Jonggeun;Lee, Jundae;Han, Kihwan
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.5
    • /
    • pp.59-63
    • /
    • 2011
  • Ground dynamic parameter such as shear elastic modulus and damping ratio is a very important variable in design of ground-structure with repeated load and dynamic load. Shear elastic modulus and damping ratio on small strain below linear limit strain is constant regardless of strain. Shear elastic modulus as the maximum shear elastic modulus and damping ratio as the minimum damping ratio were considered. As a lot of experiment related to the maximum shear elastic modulus, which is in dynamic deformation characteristics, have been conducted, many factors including voiding ratio, over consolidation ratio(OCR), confining pressure, geology time, PI, and the number of load cycle affect to dynamic soil characteristic. However, the research of ground dynamic characteristic improved with grout is absent such as underground continuous wall construction, deep mixing method, umbrella arch method. In order to investigate the dynamic soil characteristics improved with grout, in this study, resonant column tests were performed with changing water content(20%, 25%, 30%) and injection ratio of grout(5%, 10%, 15%), cure time(7th day, 28th day) As a result, shear elastic modulus and damping ratio, which are ground dynamic parameter, are affected by the injection ratio of milk grout, cure time and water content.

An Experimental Study on Time Dependency of Strain for Saturated Clay (포화점토(飽和粘土)의 변형(變形)에 있어서 시간의존성(時間依存性)에 관한 실험적(實驗的) 연구(研究))

  • Park, Byong Kee;Lee, Jin Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.3
    • /
    • pp.43-52
    • /
    • 1984
  • This paper is concerned with the strain characteristics of the time effect on the remoulded saturated day sampled from the downstream of the Yeongsan river, and the constitutive equation that can generally explain time-dependent behaviors of norma1ly consolidated clay. This paper examines whether or not the afore-said constitutive equation can be applied to the remoulded Mooan-clay. Throughout this study, the conclusions obtained are as follows. 1. Throughout the isotropic consolidation test for 7 days and the isotropic relaxation test, the existence of the static and dynamic yielding surfaces is confirmed respectively. 2. The characteristics of time effect of the deformation, namely, the existence of a unique stress-strain-time relation, is conformed from the experimental result on the Mooan-clay. 3. The prodictions of the stress path and the strain on the Cam-clay theory is not consistent with those observed during the experiments. 4. Constitutive equation(2-3-12) obtained by applying Cam-clay theory to Perzyna's elastic-viscoplasticity theory can explain the behavior of pore water pressure during isotropic stress relaxation, concerned with time dependency under undrained condition. The equation can also explain the results of the undrained triaxial compression test for the clay with different strain rate under the same or different consolidation history. 5. This constitutive equation has eight material parameters which can be determined from triaxial compression tests.

  • PDF

Characteristics of Rigid-Soft Particle Mixtures with Size Ratio (입자크기비에 따른 강-연성 혼합재의 공학적 특성)

  • Lee, Chang-Ho;Yoon, Hyung-Koo;Kim, Rae-Hyun;Lee, Woo-Jin;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.8
    • /
    • pp.125-135
    • /
    • 2008
  • Rigid-soft particle mixtures, which consist of sand and rubber, are investigated for the understanding of the stress-deformation and elastic moduli. Specimens are prepared with various size ratio sr between sand and rubber particles, and different volumetric sand fraction sf. Small strain shear waves are measured under $K_o$-loading condition incorporated with the stress-deformation test by using oedometer cell with bender elements. The stress-deformation and small strain shear wave characteristics of rigid-soft particle mixtures show the transition from a rigid particle behavior regime to a soft particle behavior regime under fixed size ratio. A sudden rise of $\Lambda$ factor and the maximum value of the $\zeta$ exponent in $G_{max}=\;{\Lambda}({\sigma}'_{o}/kPa)^{\zeta}$ are observed at $sf\;{\approx}\;0.4{\sim}0.6$ regardless of the size ratio sf. Transition mixture shows high sensitivity to confining stress. The volume fraction for the minimum porosity may depend on the applied stress level in the rigid-soft particle mixtures because the soft rubber particles easily distort under load. In this experimental study, the size ratio and volumetric sand fraction are the important factors which determine the behavior of rigid and soft particle mixtures.

Seismic Performance Evaluation of Mechanically Jointed PE Pipeline by Response Displacement Method (기계식 이음 PE관의 응답변위법 기반 내진성능평가 요령)

  • DongSoon Park
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.4
    • /
    • pp.23-32
    • /
    • 2023
  • The seismic performance of buried PE pipes is reported to be favorable due to their exceptional elongation capacity at break. Although a seismic performance evaluation procedure based on the response displacement method has been summarized in Korea for fusion-bonded PE pipes, there is currently no procedure available for mechanically jointed PE pipes. This article aims to present a seismic performance evaluation procedure based on the response displacement method specifically designed for mechanically jointed PE pipes in Korea. When employing the mechanical joining method for PE pipes, it is recommended to adhere to the evaluation procedure established for segment-type pipes. This involves assessing the stress induced by the pipe, the expansion and contraction strain of the joint, and the bending angle of the pipe joint. Furthermore, the coefficient of inhomogeneity of the soil, which is necessary for estimating the axial strain of the ground, is introduced. Additionally, a computation method for determining lateral displacement and reconsolidation settlement in soil susceptible to liquefaction is proposed. As a result of the sensitivity analysis considering the typical soil condition in Korea, the mechanically jointed PE pipe with a certain quality was shown to have good structural seismic safety when soil liquefaction was not considered. This procedure serves as a valuable tool for seismic design and evaluating the seismic performance of mechanically joined buried PE pipes, which are primarily utilized for connecting small-diameter pipes.