DOI QR코드

DOI QR Code

Seismic Performance Evaluation of Mechanically Jointed PE Pipeline by Response Displacement Method

기계식 이음 PE관의 응답변위법 기반 내진성능평가 요령

  • Received : 2023.05.14
  • Accepted : 2023.07.20
  • Published : 2023.08.31

Abstract

The seismic performance of buried PE pipes is reported to be favorable due to their exceptional elongation capacity at break. Although a seismic performance evaluation procedure based on the response displacement method has been summarized in Korea for fusion-bonded PE pipes, there is currently no procedure available for mechanically jointed PE pipes. This article aims to present a seismic performance evaluation procedure based on the response displacement method specifically designed for mechanically jointed PE pipes in Korea. When employing the mechanical joining method for PE pipes, it is recommended to adhere to the evaluation procedure established for segment-type pipes. This involves assessing the stress induced by the pipe, the expansion and contraction strain of the joint, and the bending angle of the pipe joint. Furthermore, the coefficient of inhomogeneity of the soil, which is necessary for estimating the axial strain of the ground, is introduced. Additionally, a computation method for determining lateral displacement and reconsolidation settlement in soil susceptible to liquefaction is proposed. As a result of the sensitivity analysis considering the typical soil condition in Korea, the mechanically jointed PE pipe with a certain quality was shown to have good structural seismic safety when soil liquefaction was not considered. This procedure serves as a valuable tool for seismic design and evaluating the seismic performance of mechanically joined buried PE pipes, which are primarily utilized for connecting small-diameter pipes.

지진 시 매설 PE관은 파단시 신장율이 우수하여 상대적으로 우수한 내진성능을 보이는 것으로 보고되고 있다. 국내 융착식 PE관의 응답변위법 기반 내진성능평가 절차를 제안한 바 있으나, 기계식 이음 PE관에 대한 절차는 부재한 실정이다. 이에 본 연구에서는 기계식 이음 PE관의 응답변위법 기반 내진성능평가 절차를 제시하였다. 기계식 이음 PE관의 경우 분절관의 평가 절차를 따르며, 관체 발생응력, 이음부 신축변형률 및 이음부 휨 각도 평가를 수행하도록 제안하였다. 또한 지반의 축방향 변형률 산정에 필요한 지반의 불균질성 계수를 도입하였다. 지반 액상화 우려가 있는 지반에 대한 측방 변위 및 재압밀 침하량 계산 방법도 함께 제안하였다. 국내 지반 환경을 고려한 민감도 해석 결과, 일정 품질이 확보된 기계식 이음 PE관은 지반 액상화를 고려하지 않을 때, 양호한 구조적 지진 안전성을 보였다. 본 절차는 주로 소규모 관경의 배관 접합에 사용하는 기계식 접합 매설 PE관의 내진설계 및 내진성능평가에 활용할 수 있을 것으로 판단된다.

Keywords

Acknowledgement

본 연구는 한국 PE관 공업협동조합과 (사)한국지진공학회의 재정적 지원으로 수행되었습니다. 이 논문의 지진 시 물인프라 관련 데이터와 내용 일부는 2023 K-water연구원의 연구과제, "수자원 인프라 안전 디지털 정보화 혁신기술 연구"의 일환으로 작성되었습니다. 이에 감사드립니다.

References

  1. American Lifelines Alliance (2005), Seismic guidelines for water pipelines, FEMA, National Institute of Building Sciences.
  2. Cubrinovski, M., Hughes, M., Bradley, B., McCahon, I., McDonald, Y., Cameron, R., Christison, M., Henderson, B., Orense, R., and O'Rourke, T. (2011), Liquefaction impacts on pipe networks, University of Canterbury, Christchurch, New Zeland.
  3. Cubrinovski, M., Hughes, M., Bradley, B. A., Noonan, J., Hopkins, R., McNeill, S., and English, G. (2014), Performance of horizontal infrastructure in Christchurch city through the 2010-2011 Canterbury earthquake sequence, University of Canterbury, Christchurch, New Zeland.
  4. EESK (2017), Development of seismic design and performance evaluation guideline of PE pipeline, Research Report, September 2017, Earthquake Engineering Society of Korea.
  5. GEER (2023), February 6, 2023 Turkiye earthquakes: Report on geoscience and engineering impacts, GEER Association Report 082, Earthquake Engineering Research Institute, LFE Program, May 6, 2023.
  6. Haas, K. (2012), Lifecycle cost and performance of plastic pipelines in modern water infrastructure, Research Report 2012-11, University of California, Davis, USA.
  7. Idriss, I. M., and Boulanger, R. W. (2008), Soil liquefaction during earthquakes, Earthquake Engineering Research Institute.
  8. ISO (2007a), Buried polyethylene (PE) pipes for the supply of gaseous fuels - Metric series - Specifications, ISO International Standard, Geneva, Switzerland.
  9. ISO (2007b), Plastics piping systems - Polyethylene (PE) pipes and fittings for water supply - Part 1: General, ISO International Standard, Geneva, Switzerland.
  10. ISO (2007c), Plastics piping systems - Polyethylene (PE) pipes and fittings for water supply - Part 2: Pipes, ISO International Standard, Geneva, Switzerland.
  11. Japan Water Research Center (2013), Research activities on earthquake proofing of drinking water facilities, Toranomon Minato-ku, Tokyo.
  12. JWWA (2009a), Commentary on the guideline for earthquake-resistant construction methods for water supply facilities, Japan Water Works Association. (水道施設 耐震工法 指針 解説 (2009), 日本水道協会., 일본.)
  13. JWWA (2009b), Polyethylene pipes for water distribution, Polyethylene pipe fittings for water distribution, Japan Water Works Association.
  14. KDS (2018), Seismic design general, KDS 17 10 00, Korea Design Standard.
  15. KDS (2019), Seismic design of water supply facilities, KDS 57 17 00, Korea Design Standard.
  16. Kim, B., Ji, Y., Kim, M., Lee, Y. J., Kang, H., Yun, N. R., and Lee, J. (2022), Building damage caused by the 2017 M5. 4 Pohang, South Korea, earthquake, and effects of ground conditions, Journal of Earthquake Engineering, 26(6), 3054-3072. https://doi.org/10.1080/13632469.2020.1785585
  17. Lamborn, M., and Petroff, L. (2011), A laboratory method for determining the safe pull stress for directionally drilled high density polyethylene pipe, Pipelines 2011: A Sound Conduit for Sharing Solutions, 892-902.
  18. Ministry of Environment (1999), Research to establish seismic design standards for waterworks facilities, Ministry of Environment.
  19. Miyajima, M. (2014), Performance of earthquake resistant drinking water pipeline during the 2011 Tohoku earthquake in Japan, 10th National Conference in Earthquake Engineering, Anchorage.
  20. Naik, S. P., Gwon, O., Park, K., and Kim, Y. S. (2020), Land damage mapping and liquefaction potential analysis of soils from the epicentral region of 2017 Pohang Mw 5.4 earthquake, South Korea, Sustainability, 12(3), 1234.
  21. O'Rourke, T. D., Jeon, S.-S., Toprak, S., Cubrinovski, M., Hughes, M., van Ballegooy, S., and Bouziou, D. (2014), Earthquake response of underground pipeline networks in Christchurch, NZ, Earthquake Spectra, EERI, 30(1), 183-204. https://doi.org/10.1193/030413EQS062M
  22. Park, D. S. (2020), Seismic design and performance evaluation of fusion-type polyethylene pipeline, Journal of Korean Society of Hazard Mitigation, 20(5), 297-307 (in Korean). https://doi.org/10.9798/KOSHAM.2020.20.5.297
  23. POLITEC (2016a), PTC Designing manual for polyethylene pipes and pipe fittings for water distribution, Polyethylene Piping System Integrated Technology and Engineering Center (POLITEC).
  24. POLITEC (2016b), Technical data on seismic performance of polyethylene pipes for water distribution, Polyethylene Piping System Integrated Technology and Engineering Center (POLITEC).
  25. PPI (2017), Handbook of polyethylene (PE) pipe, Plastics Pipe Institute (PPI).
  26. Wakamatsu, K., Nagata, S., Maruyama, Y., and Ozawa, K. (2016), Sendai water pipeline response to the 2011 Tohoku earthquake, Journal of Civil Engineering and Architecture, 10(10), 461-470. https://doi.org/10.17265/1934-7359/2016.04.009
  27. Zhang, G., Robertson, P. K., and Brachman, R. (2004). Estimating liquefaction-induced lateral displacements using the standard penetration test or cone penetration test, Journal of Geotechnical and Geoenvironmental Engineering, 130(8), 861-871. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:8(861)