• Title/Summary/Keyword: 일반선형모형

Search Result 258, Processing Time 0.033 seconds

A Study on the Factors Affecting the Arson (방화 발생에 영향을 미치는 요인에 관한 연구)

  • Kim, Young-Chul;Bak, Woo-Sung;Lee, Su-Kyung
    • Fire Science and Engineering
    • /
    • v.28 no.2
    • /
    • pp.69-75
    • /
    • 2014
  • This study derives the factors which affect the occurrence of arson from statistical data (population, economic, and social factors) by multiple regression analysis. Multiple regression analysis applies to 4 forms of functions, linear functions, semi-log functions, inverse log functions, and dual log functions. Also analysis respectively functions by using the stepwise progress which considered selection and deletion of the independent variable factors by each steps. In order to solve a problem of multiple regression analysis, autocorrelation and multicollinearity, Variance Inflation Factor (VIF) and the Durbin-Watson coefficient were considered. Through the analysis, the optimal model was determined by adjusted Rsquared which means statistical significance used determination, Adjusted R-squared of linear function is scored 0.935 (93.5%), the highest of the 4 forms of function, and so linear function is the optimal model in this study. Then interpretation to the optimal model is conducted. As a result of the analysis, the factors affecting the arson were resulted in lines, the incidence of crime (0.829), the general divorce rate (0.151), the financial autonomy rate (0.149), and the consumer price index (0.099).

GSSHA 지하수 모의를 위한 대수층 깊이 공간 분포 기법 연구

  • Jea-Whan Shin;Tae-Hee Yoon;Young-Seok Lee;Suk-Hwan Jang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.522-522
    • /
    • 2023
  • 지하수 시스템의 방출은 저지대 강에서 건조기에 흐르는 하천 유지유량의 원천이 된다. 수자원 분야에서 분포형 모형이 도입되며 수문 분석의 고도화가 이루어지고 있는 오늘날에도, 아직 대수층 깊이 등 지하수관련 매개변수에 대한 연구는 미진한 실정이다. 본 연구는 분포형 모형의 지하수 관련 매개변수 중 지형자료에 해당하는 대수층 깊이의 물리적인 분포형태를 예측하고, 지하수 모의결과를 검토하여 해당 기법의 적용성을 확인하였다. 본 연구에서는 북측의 미계측 유역을 포함한 소양강 유역을 연구대상 지역으로 설정하였고, 정밀한 분포형 모형인 GSSHA(Gridded Surface Hydrologic Analysis)를 활용하였다. 대수층 깊이 추정 방법은 크게 세가지 시나리오로 구분하여 모의를 진행하였다. 유역의 지하수 데이터를 통해 도출된 대수층깊이 등분포(시나리오1), 지표 고도와 대수층 깊이의 선형 반비례 관계를 가정한 선형 회귀식(시나리오2), 동일한 가정을 두고 Log차원에서 회귀식을 적용한 경우(시나리오 3). 위 3가지 시나리오를 통해 산정된 유출량과, 지하수 수위 등을 소양강댐 유입량 자료 및 유역 내 6개 지하수 관측소를 대상으로 결과를 비교하여 적용성을 확인하였다. 시나리오별 유출량 모의 오차평가 결과, 관측 첨두 유량을 가장 잘 반영하고 있는 기법은 일반적으로 선행 연구에서 많이 활용하고 있는 등분포형 기법으로 분석되었으며, 과소·과대 모의된 정도를 나타내는 지표와 모형의 효율성을 나타내는 지표는 선형 회귀분석 기법이 가장 우수한 결과로 분석되었다. 따라서, 대수층 깊이를 등분포하여 모의하던 기존 방식에 비해 지면고도-대수층깊이 간의 반비례 관계를 적용하는 방식이 지하수 모의에 있어서 보다 합리적일 것으로 판단된다. 향후 임의의 인자와 대수층 깊이간의 정밀한 회귀관계를 도출한다면 더욱 합리적이고 신뢰성 높은 결과를 얻을 수 있을것으로 기대된다. 또한 유역 단위의 지하수 모의가 정밀하게 이루어진다면 최근 많은 관심이 집중되는 하천 유지유량과 건기 유출 등의 연구 분야에도 많은 기여를 할 수 있을 것으로 기대된다.

  • PDF

A Study for an Efficient Utilization of the Linear Model (선형모형의 효율적 활용성에 관한 연구)

  • Kim Tae-Ho;Cho Eun Jung;Kim Mi Yun
    • The Korean Journal of Applied Statistics
    • /
    • v.18 no.1
    • /
    • pp.147-158
    • /
    • 2005
  • Most of the statistical models that real data can be applicable are static in nature, and thus it is not possible to analyze the effect of variations in the real world over time. Usual specification of the models does not produce the length and the time path of the effect even if the effect of an exogenous variation continues for periods of time. In this study, deriving the dynamic inherence from the static structure of the linear model for better utilization, we attempt to apply actual data to compare and analyze the long-run effect of variations in the market variables between the related markets by formulating a simultaneous equation system. Accordingly, it is proved to be possible to obtain efficient analytical results and to derive various useful implications.

Preliminary test estimation method accounting for error variance structure in nonlinear regression models (비선형 회귀모형에서 오차의 분산에 따른 예비검정 추정방법)

  • Yu, Hyewon;Lim, Changwon
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.4
    • /
    • pp.595-611
    • /
    • 2016
  • We use nonlinear regression models (such as the Hill Model) when we analyze data in toxicology and/or pharmacology. In nonlinear regression models an estimator of parameters and estimation of measurement about uncertainty of the estimator are influenced by the variance structure of the error. Thus, estimation methods should be different depending on whether the data are homoscedastic or heteroscedastic. However, we do not know the variance structure of the error until we actually analyze the data. Therefore, developing estimation methods robust to the variance structure of the error is an important problem. In this paper we propose a method to estimate parameters in nonlinear regression models based on a preliminary test. We define an estimator which uses either the ordinary least square estimation method or the iterative weighted least square estimation method according to the results of a simple preliminary test for the equality of the error variance. The performance of the proposed estimator is compared to those of existing estimators by simulation studies. We also compare estimation methods using real data obtained from the National Toxicology program of the United States.

섬진강 월강우량에 대한 월유출량의 시계열모형

  • 이종남
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 1984.07a
    • /
    • pp.89-98
    • /
    • 1984
  • 우리나라의 월강우량 기록은 풍부하나 월유출량 기록은 희박하여, 월유출량 시계열의 모형식을 개발하고저 하여 월강우량 기록만으로 하천유량의 정확한 파악을 할 수 있도록 한다. 이 연구는 월강우와 유출량의 시계열에 의한 추계학적 이론에 의거한 복스와 젠킨스의 대체함수(Transfer function model)와 아리마(ARIMA)의 잔차모양을 합한 형이다. 이 선형 추계학적 차분 시계열식 모형은 공본산(coveriance) 을 갖는다는 가정에서 강우량과 유출량의 변화에 따라서 식의 구조가 유도되며 정확하게 잘 적용이 된다. 본 식의 최적모형은 일반식으로 아래와 같이 얻어진다. $ Y$:월유출량, X$:월강우량, C$:유출물, $: 대체변수, a$:백색잡음(white noise), $\theta$(B) 및 (B):MA(Moving average)와 AR(autoregressive)조작, 이번 연구 결과 섬진강 하천의 대체조작(Transfer operator)은 잔차승(Sum of residual) R$0.9로 높은 정도의 수치를 나타내는 것으로 보인다.

  • PDF

Marginal Effect Analysis of Travel Behavior by Count Data Model (가산자료모형을 기초로 한 통행행태의 한계효과분석)

  • 장태연
    • Journal of Korean Society of Transportation
    • /
    • v.21 no.3
    • /
    • pp.15-22
    • /
    • 2003
  • In general, the linear regression model has been used to estimate trip generation in the travel demand forecasting procedure. However, the model suffers from several methodological limitations. First, trips as a dependent variable with non-negative integer show discrete distribution but the model assumes that the dependent variable is continuously distributed between -$\infty$ and +$\infty$. Second, the model may produce negative estimates. Third, even if estimated trips are within the valid range, the model offers only forecasted trips without discrete probability distribution of them. To overcome these limitations, a poisson model with a assumption of equidispersion has frequently been used to analyze count data such as trip frequencies. However, if the variance of data is greater than the mean. the poisson model tends to underestimate errors, resulting in unreliable estimates. Using overdispersion test, this study proved that the poisson model is not appropriate and by using Vuong test, zero inflated negative binomial model is optimal. Model reliability was checked by likelihood test and the accuracy of model by Theil inequality coefficient as well. Finally, marginal effect of the change of socio-demographic characteristics of households on trips was analyzed.

Survey of Models for Random Effects Covariance Matrix in Generalized Linear Mixed Model (일반화 선형혼합모형의 임의효과 공분산행렬을 위한 모형들의 조사 및 고찰)

  • Kim, Jiyeong;Lee, Keunbaik
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.2
    • /
    • pp.211-219
    • /
    • 2015
  • Generalized linear mixed models are used to analyze longitudinal categorical data. Random effects specify the serial dependence of repeated outcomes in these models; however, the estimation of a random effects covariance matrix is challenging because of many parameters in the matrix and the estimated covariance matrix should satisfy positive definiteness. Several approaches to model the random effects covariance matrix are proposed to overcome these restrictions: modified Cholesky decomposition, moving average Cholesky decomposition, and partial autocorrelation approaches. We review several approaches and present potential future work.

Correlation Analysis of Meteorological Factors for Wooden Building in Beopjusa and Seonamsa Temples by Statistical Model (통계적 모형을 통한 법주사와 선암사 목조건축물의 기상인자에 대한 상관성 분석)

  • Kim, Young Hee;Kim, Myoung Nam;Lim, Bo A;Lee, Jeung Min;Park, Ji Hee
    • Journal of Conservation Science
    • /
    • v.34 no.5
    • /
    • pp.387-396
    • /
    • 2018
  • Exposure to the natural environment can cause damage to domestic wooden cultural assets, such as temples. Deterioration is accelerated by biological damage and various environmental factors. In this study, meteorological factors were monitored by equipment installed at Beopjusa temple of Boeun province and Seonamsa temple of Suncheon province. A statistical model was applied to these data to predict the meteorological factors and to compare the predictive performance of each meteorological factor. The resulting correlation coefficient between air and dew point temperatures was highest, at 0.95, while the correlation coefficient for relative humidity had a moderate value(0.65) at both the Beopjusa and Seonamsa temples. Thus, a general linear model was found to be suitable for predicting air and dew point temperatures. An analysis of correlation between meteorological factors showed that there was strong positive correlation between air temperature and dew point temperature, and between solar radiation and evaporation at both sites. There was a weak positive correlation between air temperature and evaporation at Beopjusa temple. Wind speed was negatively correlated with both air temperature and relative humidity at Seonamsa temple. The wind speed at this location is higher than average in winter and lower than average in summer, and it was hypothesized that the low wind speed plays a role in reducing water evaporation in summer, when both air temperature and relative humidity are high. As a result, damage to the wooden buildings of Seonamsa temple is accelerated.

Fatigue Life and Cumulative Damage Analysis in the Pavement Structure by Mechano-Lattice Theory (기계적 격자이론에 의한 도로포장 구조물의 피로수명과 누적손실분석)

  • 임평남
    • Journal of Korean Society of Transportation
    • /
    • v.6 no.2
    • /
    • pp.21-33
    • /
    • 1988
  • 부적정한 도로포장 구조물의 설정 및 유지보수의 적정관리 미흡으로 표면의 피해와 소성변형이 장기간 발생된다. 이로 인한 가요성 통제 구조물의 파괴 원인은 일반적으로 포 장재료의 동질성, 선형탄성 상태의 가정 하에서 분석되었다. 그러나 아스팔트 재료의 특성은 엄밀히 분석해서 완전한 선형탄성이라고는 볼 수 없음은 잘 알려져 있다. 따라서 근본적으 로 포장체의 수명과 파양 예측에 오류 발생가능성이 높다 하겠다. 금번 연구는 이와 같은 종전의 경험적인 선형탄성 방법이 아닌 탄성일소성 상태하의 격자(mechano-lattice) 이론이란 새로운 기법을 도입하였다. 특히 마이너(Miner's Law) 이론의 누적손실과 확률을 적용하여 포장체의 피노수명과 손실을 예측할 수 있다. 금번 이론은 실제로 호주 빅토리아주의 멜보른(Melbourne)시 일부 지역구간을 모형으 로 선정되었다. 분석결과 가장 최적화된 도로포장 각층의 두께와 재료 선정을 하기 위하여 일정기간의 교통량, 상대적 손실지수와 잔여응력 및 표면 변위, 대기온도 그리고 습도의 영 향을 종합적으로 고려하여야 한다.

  • PDF

Locally Weighted Polynomial Forecasting Model (지역가중다항식을 이용한 예측모형)

  • Mun, Yeong-Il
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.1
    • /
    • pp.31-38
    • /
    • 2000
  • Relationships between hydrologic variables are often nonlinear. Usually the functional form of such a relationship is not known a priori. A multivariate, nonparametric regression methodology is provided here for approximating the underlying regression function using locally weighted polynomials. Locally weighted polynomials consider the approximation of the target function through a Taylor series expansion of the function in the neighborhood of the point of estimate. The utility of this nonparametric regression approach is demonstrated through an application to nonparametric short term forecasts of the biweekly Great Salt Lake volume.volume.

  • PDF