• Title/Summary/Keyword: 인체 충격

Search Result 79, Processing Time 0.025 seconds

Development of a hip model for impact testing of bedsore prevention cushions (욕창예방 방석의 충격시험용 둔부 모형 개발)

  • JUNG, SUNGBAE;YUK, SUNWOO;Ki-Won Choi;Sangsoo Park
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.7-11
    • /
    • 2024
  • The bedsore prevention cushion serves to prevent the skin on the buttocks of a wheelchair user from being damaged through friction with the wheelchair seat. This is because it absorbs some of the weight applied to the wheelchair seat and allows the weight to be applied evenly to the entire contact surface. For the impact test, which is part of the performance testing of bedsore prevention cushions, a hip model that represents the sitting posture of a wheelchair user is required. In this study, a hip model was manufactured for impact testing of bedsore prevention cushions for wheelchairs. Performance tests for pressure bedsore prevention cushions for wheelchairs include KSP 0236, a Korean standard, and KS P ISO 16840-2, an ISO international standard. The hip model proposed in KS P ISO 16840-2 was more suitable for impact testing of bedsore prevention cushions for wheelchairs. However, the guidelines for making hip models proposed by international standards need to be modified to reflect the advancement of model making technology and use easier methods. We propose a new hip model production method that produces a hip model out of plastic all at once and additionally attaches SS-41 steel plates processed into the shape of the hip to make the mass of the model similar to the human body.

Measurement and Assessment Methods of Vibration Exposed to Whole-body and Its Effects (전신 피폭 진동의 인체 영향 측정 및 평가 방안)

  • Cheung, Wan-Sup;Park, Yong-Hwa;Eun, Hee-Joon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.119-124
    • /
    • 2000
  • This paper introduces the brief guidelines on general aspects of tests and experiments with human subjects. Detailed methods for measuring whole-body vibration are reviewed for those tests and experiments and compared each other. Such comparison is found to be very useful in choosing adequate methods for human related tests and experiments. Of course, it is also expected to be very meaningful to our automotive research and industrial fields that are critical to the ride quality of their products with uncomfortable acoustic noise and vibration.

  • PDF

Comparison and Analysis of ISO and KS Standards Related to Human Vibrations (인체진동에 대한 ISO와 KS 표준안의 비교 분석)

  • Cheung, Wan-Sup;Choi, Jae-Bon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.227-230
    • /
    • 2000
  • This paper introduces international and Korean standards related to human-related vibration. It reviews recent standards of ISO and KS and compares them. This comparison and analysis reveals that the current direction and activity in ISO is in progress and presents logical ways of updating Korean standards in the future. Finally, the current activity of upgrading Korean standards in the Korean TC 108/SC4 is introduced.

  • PDF

Transmitted Force Estimation of Prototype HIF System Considering Flexibility of Mount System (지지부 동특성을 고려한 HIF 시스템의 충격력 예측)

  • Kim Hyo Jun;Choe Eui Jung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.4
    • /
    • pp.107-112
    • /
    • 2005
  • In this study, the dynamic analysis is performed fur predicting the transmitted force to flexible human body induced by prototype HIF(High Impulsive force) device operation, which is partially assembled by major parts. A beam-mass model and a shear-structure model are used for the flexible mount structure and their dynamic behavior are investigated by experimental results under rigid/flexible mount conditions using a general purpose device. From the test result of prototype device in rigid mount condition, the transmitted force to human body which can not be measured directly, is estimated based on the proved mount structure model.

Finite Element Analysis on the Head Injury under Impact Load (충격하중에 의한 두부외상의 유한요소해석)

  • 신현우;서본철지
    • Journal of the KSME
    • /
    • v.35 no.8
    • /
    • pp.691-697
    • /
    • 1995
  • 인체 머리부분의 충격력이 가했을 때 어떠한 상해가 발생할 것인가에 대하여 수치해석적인 접 근을 시도하였다. 복잡한 생체구조의 단순화, 비선형적인 재료 특성으로 인하여 해석 결과는 정 량적인 정확성보다 정성적인 경향성에 보다 큰 의미가 있다고 할 수 있으며, 앞으로 개선할 여 지가 많다고 할 수 있다. 또 의학적인 부분에 관한 기초지식이 필요하기 때문에 의학계의 조건 또는 의학계와의 공동 연구가 요망된다고 하겠다. 해석 결돠의 검증은 과거에는 주로 사체 및 동물 심험에 의하여 행해졌으나 현재에는 사체 실함이 금지되어 있고, 동물(원숭이, 개, 돼지 등 )을 이용한 실험도 동물 보호단체의 반발로 여의치 않은 형편이다. 현재는 교통사고 등에서의 사체 부검 및 사고 상황의 역추적에 의해 생체 실함을 대신할 데이터가 마련되고 있으나, 정확한 사고 상황을 파악하는 것 자체가 또한 어려운 작업이다. 그래서 각 나라에서 일부분씩 가지고 있는 생체에 대한 데이터를 모아 전세계적인 데이터 베이스를 만들어 공유하려는 작업이 진행 되고 있다. 이렇게 실험이 불가능하거나 어려운 상황하에서는 수치 시뮬레이션이 주요한 해석 수단이 될 수 있을 것이라 생각된다.

  • PDF

A Study on Estimation of Human Damage for Shock Wave by Vapor Cloud Explosion using Probit Model (Probit 모델에 의한 증기운폭발 충격파의 인체피해예측)

  • Leem, Sah-Wan;Huh, Yong-Jeong;Lee, Jong-Rark
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.11
    • /
    • pp.936-941
    • /
    • 2007
  • This paper is on the influence of gas explosion caused by Vapor Cloud Explosion(VCE). Also, it is to understand the influence of the booth for explosion experiment which is installed to let the trainees for legal education which is managed by IGTT(Institute or Gas Technology Training) know the riskiness of explosion. In this study, the influence of explosion shock wave caused by VCE in enclosure was calculated by using the Hopkinson's scaling law and the accident damage was estimated by applying the influence on the adjacent human into the probit model. As a result of the damage estimation conducted by using the probit model, both the damage possibility of explosion overpressure to human 8 meters away and that of shock wave to hurt 15 meters away showed nothing.

Correlation between Subjective and Objective Assessments of Shock Signals Excited on a Vehicle Passing Bumps (범프 통과시 발생하는 충격신호에 대한 주관평가와 객관평가의 상관성 연구)

  • Yoo, Wan-Suk;Kim, Min-Seok;Jang, Han-Kee;Ahn, Se-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.2
    • /
    • pp.29-36
    • /
    • 2005
  • In oder to generate various shock signals in a field study, a passenger car was driven at several speeds over road profiles that included a number of half sine shaped bumps of various heights. A triaxial SAE pad sensor was mounted on the front passenger seat to measure the acceleration signals which might produce subjective discomfort. The measured accelerations were correlated with the subjective assessments of 14 subjects. The magnitude of subjective discomfort was found to be proportional to the VDV and also the peak to peak of the frequency weighted acceleration signal.

A Study on the installation time and method of soundproofing facilities according to a Tunnel blasting work. (터널발파작업에 따른 방음시설의 설치시기와 방법에 대한 고찰.)

  • Won, Yeon-Ho;Son, Young-Bok;Jeong, Jai-Hyung
    • Proceedings of the KSEE Conference
    • /
    • 2006.10a
    • /
    • pp.119-140
    • /
    • 2006
  • The rock excavation work by doing blasting breaks the rock by using a shock pressure and gas pressure produced when explosive explodes and the shock wave by shock pressure propagated three-dimensionally from the exploding center is on the decrease notably to the distance, however, $0.5{\sim}20%$ of energy produced by blasting propagates into the ground outside a crack zone by the shape of an elastic wave, on the ground it appears as a ground vibration with a seismic amplitude and a seismic cycle, it is called a blasting vibration. on the other side, what propagated in the air is called a blasting sound. The blasting sound of both means the things which the shock sound within the range the audible frequency($20{\sim}20000Hz$) of the elastic wave in the air influences the response system of a human body, it doesn't harm physically to any structures but influences unreasonably a work accomplishment, such as a work discontinuance due to the outbreak of a public complaint by a mental pain, reduction of a blasting scale, etc.. So, this study is examined at about 20 sites on the installation time and method of soundproofing facilities for reduction of the sound accompanied with a tunnel blasting work.

  • PDF

Evaluation of Shock-Absorbing Performance of Three-Different Types of Bicycle Suspension Systems (자전거에서 서스펜션 종류에 따른 인체영향 시뮬레이션)

  • Chung, Kyung-Ryul;Hyeong, Joon-Ho;Kim, Sa-Yup
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.7
    • /
    • pp.943-946
    • /
    • 2010
  • In this study, a front suspension system, which is mounted on the handle itself, was suggested because of its light weight and cost efficiency. The shock absorption was evaluated for the three types of suspension models; non-suspension, suspension on front forks (existing model), and suspension on handle (suggested model). The human body model was used for performing impact simulation for comparing the shock absorption for the suspension models. The result of the simulation shows that shock absorption for the proposed suspension model was not as good as that for the front fork suspension model. Nevertheless, the shock absorption observed for the proposed suspension model was significant when compared to the non-suspension model. Consequently, the proposed suspension model could be applied to lightweight bicycles.

The Anisotropic and Viscoelastic Properties of Bone Tissue (근골격계의 골조직이 가지는 이방성 및 점탄성 특성)

  • Kim, Jin-Sung;Kwon, Jung-Sik;Roh, Jin-Ho;Lee, Soo-Yong
    • Composites Research
    • /
    • v.25 no.1
    • /
    • pp.9-13
    • /
    • 2012
  • In this research, biomechanical characteristics of the bone tissue are experimentally investigated. By using specimens of the bovine bone, the mechanical properties are obtained through tension and shear tests. In experiments, non-homogeneous and anisotropic properties with respect to longitudinal and transversal directions are observed. Moreover, the viscoelastic behavior in which modulus and strength properties are dependent on strain rates is analyzed. It is expected that a numerical damage model of the bone be efficiently established based on the results.