• Title/Summary/Keyword: 인젝션

Search Result 65, Processing Time 0.022 seconds

Memory Injection Technique and Injected DLL Analysis Technique in Windows Environment (윈도우 환경에서의 메모리 인젝션 기술과 인젝션 된 DLL 분석 기술)

  • Hwang, Hyun-Uk;Chae, Jong-Ho;Yun, Young-Tae
    • Convergence Security Journal
    • /
    • v.6 no.3
    • /
    • pp.59-67
    • /
    • 2006
  • Recently the Personal Computer hacking and game hacking for the purpose of gaining an economic profit is increased in Windows system. Malicious code often uses methods which inject dll or code into memory in target process for using covert channel for communicating among them, bypassing secure products like personal firewalls and obtaining sensitive information in system. This paper analyzes the technique for injecting and executing code into memory area in target process. In addition, this analyzes the PE format and IMPORT table for extracting injected dll in running process in affected system and describes a method for extracting and analyzing explicitly loaded dll files related with running process. This technique is useful for finding and analyzing infected processes in affected system.

  • PDF

The Flexible Seal Fabrication utilizing a rubber Injection Method (고무 인젝션 방법을 이용한 플렉시블 씰 제작)

  • Kim, Byung-Hun;Kwon, Tae-Hoon;Cho, In-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.707-710
    • /
    • 2010
  • The most important things in the KSLV-I Kick Motor nozzle is a development of flexible seal that is utilized to drive a movable nozzle. Especially, a manufacturing technology of flexible seal is one of the key element in the Kick Motor nozzle development. The method used to produce flexible seal in the Kick Motor is injection method. Mold design technology, rubber injection technic and molding process through flexible seal manufacture has been established. After manufacturing, X-Ray inspection have been carried out to confirm a adhesive and internal array of flexible seal.

  • PDF

Simulation Study of a High Current Proton Beam Transport for a 70MeV Cyclotron Injection

  • Choi, Y.K.;Kim, Y.S.;Hong, S.K.;Kim, J.H.;Kim, J.W.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.183.1-183.1
    • /
    • 2013
  • 70 MeV 사이클로트론의 인젝션 빔 라인은 Multi-CUSP 이온원에서 인출된 H- 빔을 펄스 또는 번칭하여 인플렉터를 통해 사이클로트론의 가속영역인 Dee로 전송하는 역할을 한다. 이 때, 빔을 번칭 시킴으로써 가속효율을 높이고, 손실을 줄여 높은 전류의 빔을 공급할 수 있도록 해야한다. 인젝션 시스템은 einzel lens, chopper, buncher, solenoid 등으로 구성된다. Einzel lens는 빔을 buncher의 중심으로 집속시켜 buncher의 번칭 효율을 높이고, buncher는 전기장을 이용하여 빔을 진행방향으로 집속시키는 기능을 갖는다. Chopper는 번칭된 빔을 일정 주기로 편향을 시켜 펄스 빔의 형태로 전송하는 역할을 한다. 솔레노이드는 적절한 자기장을 이용하여 빔을 집속시켜 인플렉터로 전송한다. 본 연구에서는 사이클로트론의 고전류 인젝션 시스템을 구축하고 각각의 구성요소에서 빔 envelope를 계산하고 비교하였다. SIMION code는 user가 지정한 특성을 가진 개별 입자의 궤도를 추적하는 프로그램으로 인젝션 시스템을 구성하는 각각의 컴포넌트에서의 입자의 진행모습과 buncher를 이용하여 빔의 전송 밀도가 향상됨을 확인하였다. 아울러 TRANSPORT 및 TURTLE 프로그램을 이용하여 SIMION을 통해 계산된 빔의 envelope과 비교하였다.

  • PDF

Enhanced Method for Preventing Malware by Detecting of Injection Site (악성코드 인젝션 사이트 탐지를 통한 방어효율 향상방안)

  • Baek, Jaejong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.7
    • /
    • pp.1290-1295
    • /
    • 2016
  • Recently, as mobile internet usage has been increasing rapidly, malware attacks through user's web browsers has been spreading in a way of social engineering or drive-by downloading. Existing defense mechanism against drive-by download attack mainly focused on final download sites and distribution paths. However, detection and prevention of injection sites to inject malicious code into the comprised websites have not been fully investigated. In this paper, for the purpose of improving defense mechanisms against these malware downloads attacks, we focus on detecting the injection site which is the key source of malware downloads spreading. As a result, in addition to the current URL blacklist techniques, we proposed the enhanced method which adds features of detecting the injection site to prevent the malware spreading. We empirically show that the proposed method can effectively minimize malware infections by blocking the source of the infection spreading, compared to other approaches of the URL blacklisting that directly uses the drive-by browser exploits.

Preventing Service Injection Attack on OSGi Platform (OSGi 플랫폼에서 서비스 인젝션 공격 및 대응책)

  • Kim, In-Tae;Chung, Kyung-Yong;Rim, Kee-Wook;Lee, Jung-Hyun
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.8
    • /
    • pp.111-118
    • /
    • 2010
  • The OSGi platform is a Java-based component platform that is being widely used from environments for the application development to enterprise software. The OSGi platform provides dynamic and transparent installation for open environments. However, it open new attacks so that many researches try to solve OSGi vulnerability. Security flaws in OSGi platform are categorized two parts: the JVM and the OSGi platform itself. We focus on vulnerability by OSGi platform itself, particularly service injection. We identify the service injection attack and suggest secure mechanisms to prevent the attack. Those mechanisms are implemented, providing a few modification to the Knopflerfish OSGi implementation and are evaluated through comparing with existing mechanisms.

Design of Gas-Injection Port of an Asymmetric Scroll Compressor for Heat Pump Systems (히트 펌프용 비대칭 스크롤 압축기의 가스 인젝션 포트 설계)

  • Kim, Yong-Hee;Kim, Hyun-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.6
    • /
    • pp.300-306
    • /
    • 2015
  • For an asymmetric scroll compressor for heat pump application, a numerical simulation was carried out to investigate the effects of injection port design on the compressor's performance under gas injection. To validate the simulation, the numerical results were compared with experimental results obtained from a scroll compressor with a base injection port design. There was good agreement between simulation and experimental results, with around a 1% difference in the injection mass flow rate when the injection pressure was below $12kgf/cm^2A$ for the heating mode. Various injection port angular positions were numerically tested to yield better injection performance. The largest improvement in heating capacity was obtained at angles of $240^{\circ}$ and $200^{\circ}$ inward from the scroll wrap end angle for low-temperature and standard heating conditions, respectively, while the maximum COP improvement was at $365^{\circ}$ and $280^{\circ}$, respectively. A considerable improvement in cooling capacity was also found at the injection port angle of $240^{\circ}$.