• Title/Summary/Keyword: 인장 변형성능

Search Result 232, Processing Time 0.023 seconds

Welding Characteristics of 400MPa Grade Hot Rolled H-beam(SHN400) for Building Structure (400MPa급 건축구조용 열간압연 H형강(SHN400)의 용접특성)

  • Kim, Hee-Dong;Yang, Jae-Geun;Lee, Eun-Taik;Kim, Woo-Bum;Oh, Young-Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.1
    • /
    • pp.129-136
    • /
    • 2012
  • This study seeks to evaluate the welding characteristics of SHN400 steel, which is suitable for the steel material used in building structures in KS. For this purpose, the Y-groove weld crack test and hardness, tensile, bending, cross tensile, and charpy V notch tests at the welding point were conducted with specimens taken from the highest, the thickest and the commonly used H-beams for girder or beam members. Each test was conducted under the KS test conditions. All tests results satisfied the requirements of KS and the welding requirements for the proper inelastic behavior of structure, indicating that SHN400 can be used for the building structure as a structural material.

Double Punch Tensile Strength of Cylindrical Mortar with Steel Fibers aligned in Circumferential Direction by Electro-Magnetic Field (전자기장을 이용하여 강섬유를 원주방향으로 배열시킨 원통형 몰탈의 Double Punch 인장강도)

  • Shin, Sun-Chul;Mukharromah, Nur Indah;Moon, Do-Young;Park, Dae-Wook
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.1
    • /
    • pp.40-47
    • /
    • 2022
  • In this study, the direction of the steel fibers mixed in the normal mortar and the steel slag mortar was arranged in the circumferential direction by using an electromagnetic field, and a double punch test was performed to evaluate the effect of magnetic filed exposure on tensile strength and on fracture energy. As a result of the experiment, it was confirmed that it is possible to arrange the steel fibers in the circumferential direction. Tensile strength and displacement at failure were also increased according to the arrangement of steel fibers due to exposure to electromagnetic fields. On the other hand, the fracture energy hardly increased. It is considered that there was a limit in resisting crack growth because the area where the arrangement of steel fibers could be adjusted under the electromagnetic field was not deep to center of specimen and the end shape of the steel fibers were straight not hooked. Additional research is needed to address these issues.

Stiffness analysis according to support design variables in the metal additive manufacturing process (금속 적층제조에서의 서포트 설계변수에 따른 강성 분석)

  • In Yong Moon;Yeonghwan Song
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.6
    • /
    • pp.268-275
    • /
    • 2023
  • This paper delves into the crucial realm of support structures in metal additive manufacturing (AM) processes and their direct impact on the stiffness of printed components. With the continuous evolution of AM technologies, optimizing support structures has become imperative to enhance the overall quality and performance of manufactured metal parts. Therefore, in this study, tensile specimens were manufactured using various representative support design variables such as support type, spacing, and penetration depth, and the differences in displacement-load curve were analyzed though tensile test. Using additively manufactured support shaped tensile specimen, the paper presents a comprehensive examination of the effect of support parameters on their stiffness. The findings contribute to advancing the understanding how to design supports to suppress thermal deformation of metal parts during AM process, thereby paving the way for enhanced design freedom and functional performance in the ever-expanding field of AM.

Evaluating Seismic Performance of Steel Welded Moment Connections Fabricated with SN Steel (SN 강재가 사용된 강구조 용접모멘트접합부의 내진성능 평가)

  • Oh, Sang-Hoon;Choi, Young-Jae;Yoon, Sung-Kee;Lee, Dong-Gue
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.3
    • /
    • pp.271-280
    • /
    • 2010
  • This study was programmed to fabricate a beam-to-column connection that is limited to a steel-welded moment connection with full-scale members, using SN steel. A cyclic seismic test was conducted of the nine specimens that were fabricated by choosing the test variable for the weld access hole geometry, connection design method, and RBS. From the test results, failure modes, the moment-drift behavior, and the strain distribution were provided. From the specimen material properties, the beam's nominal plastic flexural capacity and classified qualified connection as a special moment flame were calculated. By analyzing the skeleton part and the baushinger part, a range of strength-raising effects, and deformation ratios were provided, with which the seismic performance of the specimens were evaluated. The test results showed that the specimens eliminated their weld access holes that demonstrated higher seismic performance than the specimens' existing weld access holes, and that the WUF-W connection that was reinforced by the supplemental fillet weld around the shear tap that was fastened by five bolts demonstrated superior seismic performance.

A Study on Torsional Characteristics of the Car Body Types at Cornering Motion (선회주행 시 차체의 비틀림 특성에 관한 연구)

  • Lee, Joon-Seong;Cho, Seong-Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.739-744
    • /
    • 2017
  • Elastic deformation and fatigue damage can cause the permanent deformation of a kart's frame during turning, affecting the kart's driving performance. A kart's frame does not contain any suspension or differential devices and, therefore, the dynamic behavior caused by torsional deformation when driving along a curve can strongly affect these two kinds of deformations. To analyze the dynamic behavior of a kart along a curved section, the GPS trajectory of the kart is obtained and the torsional stress acting on the kart-frame is measured in real time. The mechanical properties of leisure and racing karts are investigated by analyzing their material properties and conducting a tensile test. The torsional stress concentration and frame distortion are investigated through a stress analysis of the frame on the basis of the obtained results. Leisure and racing karts are tested in each driving condition using driving analysis equipment. The behavior of a kart when being driven along a curved section is investigated through this test. Because load movement occurs owing to centrifugal force when driving along a curve, torsional stress acts on the kart's steel frame. In the case of a leisure kart, the maximum torsional stress derived from the torsional fatigue limit was found to be 230 MPa, and the torsional fatigue limit coefficient was 0.65 when driving at a speed of 40 km/h. Furthermore, the driving elements during the cornering of a kart were measured based on an actual auto-test after installing a driving measurement system, and the driving behavior of the kart was analyzed by measuring its vertical displacement.

ViscoElastic Continuum Damage (VECD) Finite Element (FE) Analysis on Asphalt Pavements (아스팔트 콘크리트 포장의 선형 점탄성 유한요소해석)

  • Seo, Youngguk;Bak, Chul-Min;Kim, Y. Richard;Im, Jeong-Hyuk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6D
    • /
    • pp.809-817
    • /
    • 2008
  • This paper deals with the development of ViscoElastic Continuum Damage Finite Element Program (VECD-FEP++) and its verification with the results from both field and laboratory accelerated pavement tests. Damage characteristics of asphalt concrete mixture have been defined by Schapery's work potential theory, and uniaxial constant crosshead rate tests were carried out to be used for damage model implementation. VECD-FEP++ predictions were compared with strain responses (longitudinal and transverse strains) under moving wheel loads running at different constant speeds. To this end, an asphalt pavement section (A5) of Korea Expressway Corporation Test Road (KECTR) instrumented with strain gauges were loaded with a dump truck. Also, a series of accelerated pavement fatigue tests have been conducted at pavement sections surfaced with four asphalt concrete mixtures (Dense-graded, SBS, Terpolymer, CR-TB). Planar strain responses were in good agreement with field measurements at base layers, whereas strains at both surface and intermediate layers were found different from simulation results due to the complexity of tire-road contact pressures. Finally, fatigue characteristics of four asphalt mixtures were reasonably described with VECD-FEP++.

Design of Fiber Reinforced Cement Matrix Composite Produced with Limestone Powder and Flexural Performance of Structural Members (석회석 미분말을 혼입한 시멘트계 매트릭스 섬유복합재료의 설계 및 구조부재의 휨성능)

  • Hyun, Jung-Hwan;Kim, Yun-Yong
    • Composites Research
    • /
    • v.29 no.6
    • /
    • pp.328-335
    • /
    • 2016
  • The purpose of this study is to develop fiber reinforced cement matrix composite (ECC) produced with limestone powder in order to achieve high ductility of the composite, and to evaluate flexural performance of structural members made with ECC. Four kinds of mixture proportions were determined on the basis of the micromechanics and a steady state cracking theory considering the matrix fracture toughness and fiber-matrix interfacial characteristics. The mechanical properties of ECC, represented by strain-hardening behavior in uniaxial tension, were investigated. Also, strength property of the composite was experimentally evaluated. Two structural members made with ECC were produced and tested. Test results were compared with those of conventional concrete structural members. Increased limestone powder contents of ECC provides higher ductility of the composites while generally resulting in a lower strength property. ECC structural members exhibited higher flexural ductility, higher flexural load-carrying capacity and tighter crack width compared to conventional structural members.

Development of Seismic Performance Evaluation Reinforcement by FRP and Ductile Material Layered Composites (섬유강화플라스틱과 연성재 적층복합체로 구성된 내진성능보강재의 개발)

  • Chang, Chun-Ho;Jang, Kwang-Seok;Kim, Ki-Hong;Joo, Chi-Hong
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1486-1491
    • /
    • 2010
  • Recently, the frequency and magnitude of the earthquake have increased. The structural safety of the public facilities such as bridges and tunnels etc. which were not concerned for earthquake resistant design are increased. Fiber reinforcement polymer that has been frequently studied for seismic retrofit has advantage as seismic reinforcement material, but it has disadvantage of the brittleness. Therefore, the investigation of safety and seismic reinforcement are required. In this study, new FRP-ductile material layered composites proposed to seismic performance reinforced of subway tunnel. Tensile test of FRP-ductile material layered composites showed that Maximum tensile force of FRP-ductile using Aluminum is similar to existing FRP reinforcement material and maximum strain was increased. In case of application of domestic subway tunnel which need ductility, layered composites of FRP-Aluminum is estimated effectively for increase of seismic performance.

  • PDF

Evaluation on Patching Materials for Asphalt Pavement (아스팔트 포장도로의 응급보수재료 평가에 관한 연구)

  • Shim, Jae-Pill;Jin, Jung-Hoon;Park, Tea-Soon;Lee, Jae-Sik
    • International Journal of Highway Engineering
    • /
    • v.14 no.3
    • /
    • pp.59-67
    • /
    • 2012
  • This study presents the evaluation of the patching materials that are used to repair the distress of asphalt pavement. Four kinds of patching materials currently used in practice were tested in both laboratory and field. The laboratory tests included the dry and soaked Marshall stability test, indirect tensile test, wheel tracking test and adhesive strength between the asphalt pavement and the repairing material was tested as a performance test. The field study was conducted using the slab samples placed on the location of vehicle tire passing and the performance of the repairing materials were investigated as passing the traffic load. The result of the laboratory tests were satisfied with the current design criteria and material standard except for water-immersion stability. Type C patching material showed the highest adhesive shear strength among the patching materials tested. However, the mature distress, such as rutting and stripping were monitored after construction in 10 days. It was found that performance of patching material is lack of quality behavior when they were applied in the field and required to develop and applu to prevent the mature distress of the current patching materials.

A Study on the Weld Performance of High Strength Steel considering the Fabrication (제작을 고려한 고강도강재의 용접성능에 관한 연구)

  • Kyung, Kab Soo;Hong, Sung Wook;Park, Yong Jin
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.5 s.60
    • /
    • pp.647-656
    • /
    • 2002
  • High-strength steel in steel bridges is the key to achieving cost-efficiency because it facilitates lightweight construction and rationalizes structure. The future of high-strength steel is bright, with its use projected to expand. As such, it is necessary to evaluate precisely various factors affecting the process of fabricating high-strength steel, i.e., welding heat, strain hardening, and weldability and performance of the welded joints. This study therefore performed the maximum hardness test and y-groove weld crack test using welding processes such as SAW, FCAW, and GMAW, in order to investigate the welding performance and characteristics of welded Joints or high-strength steel produced in Korea such as SM570, POSTEN60, and POSTEN80. In addition, a series of welding tests was carried out to estimate the tensile strength, bending characteristics, absorbed energy, and hardness in welded joints.