• Title/Summary/Keyword: 인장실험

Search Result 1,993, Processing Time 0.034 seconds

Tensile Load Transmission Capacity of H-shaped Beam by Stud Connectors (스터드 커넥터로 연결된 H형강보의 인장하중 전달성능)

  • Lee, Myung Jae;Choi, Wan Chol;Kim, Won Ki;Kim, Jae Hee;Lee, Sang Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.2 s.69
    • /
    • pp.267-274
    • /
    • 2004
  • The objective of this study is to evaluate tensile load transmission capacity of H-shaped beam about design load by stud connector. The basic test of stud connecter was conducted and two specimens of full-scale size were tested under monotonic tensile loading condition. The parameter of tests is the size of the H-shaped beams. The results show that tensile load transmission capacity of H-shape beam about design load by stud connectors is excellent observing to the design code of steel structures of Architectural Institute of Korea.

MICROSCOPIC OBSERVATION OF DRAPED COMPOSTTE MATERIALS : Picture Frame Test (직물 복합재료의 드레이핑 미소 거동 관찰: 사진틀 전단실험)

  • Kang Jae-Hoon;Chang Seung-Hwan
    • Composites Research
    • /
    • v.18 no.2
    • /
    • pp.13-19
    • /
    • 2005
  • In this paper deformation of micro-mechanical parameters such as tow interval, tow thickness and change in tow amplitude are investigated by using dry fabrics (Five-harness satin weave) under shear deformation. To evaluate the observation results according to the generated in-plane forces in the material, bias extension, biaxial test results are compared with. It was found that a picture frame test with a misaligned fibre orientation angle shows large differences in deformation between tensile and compressive tow directions.

An Experimental Study on the Evaluation of Residual Tensile Load-carrying Capacity of Corroded Steel Plates of Temporary Structure (가시설 부식 강재의 잔존 인장 내하성능 평가에 관한 실험적 연구)

  • Kim, In-Tae;Chang, Hong-Ju;Cheung, Ji-Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.5
    • /
    • pp.399-409
    • /
    • 2010
  • Steel structures are threatened to reduce load-carrying capacity as the cross section is decreased by corrosion. However, there has been no method in definitely evaluating residual load-carrying capacity and the effect of corrosion to the load-carrying capacity of steel. This study evaluated tensile residual load-carrying capacity of corroded steel plates by using tensile tests of specimens, which were selected from the web of temporary structure's main beam. After the surface shapes were measured and tensile tests were examined, the rust of 21 corroded specimens was, first of all, removed using a chemical method. From the tensile test result, which of reference specimens that was picked off at the flange of the same main 13-mm-thick beam and corroded specimens were based, surface geometry and correlation with the reduction of corroded thickness and strain, yield strength or tensile strength was established as constant numbers. Effective thickness of corroded steel with irregular cross sections could be calculated using average residual thickness and standard deviation. The irregular cross sections could be the evaluated tensile strength that is equalized to non-corroded uniform steel's regardless of corrosion. Also, reasonable measuring intervals of residual thickness could be proposed by using this result to apply for executive work.

Experimental Study on Ultimate Tensile Failure Properties of Laminated Rubber Bearings (적층고무받침의 극한인장파괴 특성에 관한 실험적 연구)

  • Oh, Ju;Jung, Hie-Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.4A
    • /
    • pp.303-309
    • /
    • 2011
  • Laminated rubber bearing is the most commonly used device for seismic base isolation of bridge structures. It is important to know performance and behavior characteristics of the laminated rubber bearings. The main evaluation factors of the rubber bearing are classified as compressive, shear and tensile behavior characteristics. The reference data of compressive and shear characteristics are rich, but the reference data of tensile characteristics is scarce. In this study, tensile test results of the rubber bearing with variation of shape factor and shear deformation are investigated for mechanical property. When tensile deformation in normal condition is increasing, tensile cycle behavior curve becomes non-linear and tensile breaking point is 300%. On the other hand, tensile breaking point is shear deformation condition is about 40%. Furthermore, when shape factor is lower, tensile breaking point is decrease. This results mean that tensile breaking point is decreased in triaxial tensile deformation because of cracks caused by internal void of the rubber bearings. This experimental data can be used as the reference data of tensile characteristics for designing seismic isolation of structures.

Experimental Study on the Tensile Behaviors of Stud Connection with Hanger (행거로 보강된 스터드 접합부의 인장거동에 관한 실험적 연구)

  • Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.4
    • /
    • pp.231-238
    • /
    • 2004
  • This paper presents the tensile behavior of the stud connection between reinforced concrete(RC) and steel members. Hanger reinforcements are placed around the studs to transfer the tensile and flexural loads to the opposite side of the concrete member. Eight specimens for the tensile tests are tested with variables, which are the arrangement details of hanger reinforcements, the reinforcing bars, and the embedment length of stud. The results of the tensile tests show that hanger reinforcements are effective to increase tensile strength for stud connections. Hangers and reinforcing bars near stud bolts contributed to the reduction of brittle failure. From the evaluation on the tensile strength by previous design guidelines, it was shown that CCD (Concrete Capacity Design) method was more suitable for estimation of test strength.

Tension Stiffening Effect and Crack Behavior of Tension Members Using High Strength Concrete (고강도 콘크리트 인장부재의 인장강화효과와 균열거동)

  • Kim, Jee-Sang;Park, Chan Hyuk
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.1
    • /
    • pp.50-58
    • /
    • 2018
  • The verification of serviceability of concrete structures requires more informations on the composite behaviors between concrete and reinforcement. Among them, the investigation of crack widths and spacings is based on the tension stiffening effects. In this paper, the tension stiffening effects of high strength concrete members with compressive strength of 80 and 100MPa are investigated experimentally. It was found that the current design code which is based on the tests of normal strength concrete may not describe the tension stiffening effects in high strength concrete correctly. The coefficient that can appropriately reflect the tension stiffening effects in the high strength concrete was proposed. Also, the crack spacing was investigated through the cracking behaviors and the crack width according to the difference of the strains in steel and concrete was estimated. The results of this paper may be used to examine the tension stiffening effects of high strength concrete members.

Experimental Investigation of the Flexural Behavior of Lightweight Aggregate Concrete Beams (경량 콘크리트 보의 휨 거동에 관한 실험적 연구)

  • Byon, Eun-Hyuk;Cho, Jang-Se;Lee, Young-Hak;Kim, Hee-Cheul
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.441-444
    • /
    • 2010
  • 대공간 구조물과 초고층 빌딩에 있어 건축물의 자중 감소에 대한 요구가 늘어나고 있으며 이에 대한 가장 효과적인 방법 중 하나는 경량 콘크리트를 사용하는 것이다. 본 연구는 최외단 철근의 순인장 변형률에 따른 경량콘크리트 보의 휨 거동 및 휨 성능을 평가하는 것에 그 목적이 있다. 크기와 형상이 동일한 보통중량 콘크리트 보 1개와 경량 콘크리트 보 4개의 총 5개 시험체를 제작하여 최외단 철근의 순인장 변형률을 변수로 실험을 수행하였으며 이를 통해 순인장 변형률에 따른 경량콘크리트 보의 강도와 연성의 변화를 분석하였다. 실험 결과 최외단 철근의 순인장 변형률이 증가할수록 시험체의 연성비는 증가하였으며 최대하중과 강성은 감소하였다. 특히 순인장 변형률 0.005 이상에서 연성지수 2 이상을 확보할 수 있었다.

  • PDF

Tensile Test and Creep Tests of ETFE Membrane (ETFE 막재에 대한 인장실험과 크리프 실험)

  • Kim, Jae-Yeol;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.3
    • /
    • pp.57-64
    • /
    • 2010
  • Uniaxial tensile tests of ETFE membrane are performed in this paper. Three kinds ETFE membrane with different thickness are used in the tests. The tensile strength, the tensile strain at break and the stress-strain curve are obtained from the tests. Futhermore, The cycle loading test of ETFE membrane is carried out through using different values of cycle stress. The residual strain, the relaxation of stress and the change of the elastic modulus of foil are investigated. In the creep test, three kinds of temperature (25, 40 and 60 $^{\circ}C$)and three kinds of stress(3,6and9 MPa) are set respectively and the creep time lasts 24 hours.

  • PDF

Nonlinear FE Analysis of RC Shear Walls (철근콘크리트 전단벽의 비선형 유한요소해석)

  • 곽효경;김도연
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.3
    • /
    • pp.293-308
    • /
    • 1999
  • 이 논문에서는 패널, 깊은 보 그리고 전단벽과 같이 평면응력상태하에 있는 철근콘크리트 구조물의 비선형 유한요소해석에 있어서의 직교이방성 콘크리트 구성 모델의 적용성을 보여준다. 등가의 일축 변형을 개념을 토대로 콘크리트의 구성 관계가 주변형률 축과 일치하고 하중이력에 따라 회전하는 직교하는 축에 대해 제시된다. 제안된 모델은 이축 압축응력상태와 인장-압축 응력상태에서 각각 압축강도의 증가와 인장 저항력의 감소효과를 보여주는 이축 파괴영역의 정의를 포함한다. 인장균열이 발생한 후, 콘크리트의 압축강도의 감소효과가 제시되고, 인장강화효과로 알려진 철근에 의해 지지되는 콘크리트의 인장응력이 고려된다. 평균응력과 평균변형률 개념을 사용하여 힘의 평형, 적합조건 그리고 철근과 철근을 둘러싼 콘크리트 사이의 부착응력-슬림 관계를 토대로 인장강화효과를 모사하기 위한 모델이 제안된다. 유한요소 모델에 의한 예측은 유용한 실험자료와의 비교에 의해 입증된다. 이 논문에서는 해석결과와 이상화한 전단 패널실험으로부터 얻어진 실험값의 비교연구가 수행되고, 제안된 모델의 타당성을 보여주기 위해 서로 다른 응력상태하의 전단 패널 보와 벽체의 힘-변위 관계를 평가하였다.

  • PDF

Compressive Strength and Tensile Behavior of Ultra-High Performance Concrete and High-Ductile Cementless Composite (초고성능 콘크리트와 고연성 무시멘트 복합재료의 압축 및 인장성능)

  • Choi, Jeong-Il;Park, Se Eon;Lee, Bang Yeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.3
    • /
    • pp.69-75
    • /
    • 2017
  • Ultra-high performance concrete and high ductile cementless composite are considered as promising construction materials because those exhibits higher performance in terms of high strength and high ductility. The purpose of this study is to investigate experimentally the compressive strength and tensile behavior of ultra-high performance concrete and high ductile cementless composite. A series of experiments including density, compressive strength, and uniaxial tension tests were performed. Test results showed that the compressive strength and tensile strength of alkali-activated slag based high ductile cementless composite were lower than those of ultra-high performance concrete. However, the tensile strain capacity and toughness of alkali-activated slag based high ductile cementless composite were higher than those of ultra-high performance concrete. And it was exhibited that a high ductility up to 7.89% can be attainable by incorporating polyethylene fiber into the alkali-activated slag based cementless paste.