• Title/Summary/Keyword: 인장실험

Search Result 1,999, Processing Time 0.036 seconds

A Study on the Fatigue Strength of the 3-D Reinforced Composite Joints (3-차원 보강 복합재 체결부의 피로강도 특성 연구)

  • Kim, Ji-Wan;An, Woo-Jin;Seo, Kyeong-Ho;Choi, Jin-Ho
    • Composites Research
    • /
    • v.35 no.5
    • /
    • pp.322-327
    • /
    • 2022
  • Composite lap joints have been extensively used due to their excellent properties and the demand for light structures. However, due to the weak mechanical properties in the thickness direction, the lap joint is easily fractured. various reinforcement methods that delay fracture by dispersing stress concentration have been applied to overcome this problem, such as z-pinning and conventional stitching. The Z-pinning is reinforcement method by inserting metal or carbon pin in the thickness direction of prepreg, and the conventional stitching process is a method of reinforcing the mechanical properties in the thickness direction by intersecting the upper and lower fibers on the preform. I-fiber stitching method is a promising technology that combines the advantages of both z-pinning and the conventional stitching. In this paper, the static and fatigue strengths of the single-lap joints reinforced by the I-fiber stitching process were evaluated. The single-lap joints were fabricated by a co-curing method using an autoclave vacuum bag process and I-fiber reinforcing effects were evaluated according to adherend thickness and stitching angle. From the experiments, the thinner the composite joint specimen, the higher the I-fiber reinforcement effect, and Ifiber stitched single lap joints showed a 52% improvement in failure strength and 118% improvement in fatigue strength.

Changes in atlas position with Class ll activator treatment in Class II malocclusion patients (II급 부정교합자에서 액티베이터 사용에 따른 atlas의 위치 변화에 관한 연구)

  • Cho, Moon-Ki;Cha, Kyung-Suk;Chung, Dong-Hwa;Lee, Jin-Woo
    • The korean journal of orthodontics
    • /
    • v.37 no.1 s.120
    • /
    • pp.44-55
    • /
    • 2007
  • Objective: Previous studies have reported that morphological features of the first cervical vertebra (atlas) have been associated with mandibular growth direction. The purpose of this study was to show the possible positional and morphological changes of the Atlas from activator treatment in Class II malocclusion patients. Methods: Lateral cephalometric radiograph tracings were made at initial, middle and final stages of treatment. Angular and linear measurements of skeletal and morphological features were measured on the anatomical landmarks and reference planes. Results: The skeletal effects of activator treatment on Class II malocclusion patients were evident on ramal height, body length, effective body length, ANB, and overjet. Clockwise rotation of the long axis of the Atlas was found in Group 1, but there was no inclination change of the Atlas in groups 2 and 3. There was no significant correlation between anterior and posterior positions of the atlas or morphological change in all groups. - except for posterior movements of the Atlas found in group 1. Conclusion: Clockwise rotation of the atlas axis resulted from activator treatment in Cl II malocclusion patients. Change in atlas axis can be thought of as an indicator for success of activator treatment.

Effect of Implant Types and Bone Resorption on the Fatigue Life and Fracture Characteristics of Dental Implants (임플란트 형태와 골흡수가 임플란트 피로 수명 및 파절 특성에 미치는 효과에 관한 연구)

  • Won, Ho-Yeon;Choi, Yu-Sung;Cho, In-Ho
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.26 no.2
    • /
    • pp.121-143
    • /
    • 2010
  • To investigate the effect of implant types and bone resorption on the fracture characteristics. 4 types of Osstem$^{(R)}$Implant were chosen and classified into external parallel, internal parallel, external taper, internal taper groups. Finite elements analysis was conducted with ANSYS Multi Physics software. Fatigue fracture test was performed by connecting the mold to the dynamic load fatigue testing machine with maximum load of 600N and minimum load of 60N. The entire fatigue test was performed with frequency of 14Hz and fractured specimens were observed with Hitachi S-3000 H scanning electron microscope. The results were as follows: 1. In the fatigue test of 2 mm exposed implants group, Tapered type and external connected type had higher fatigue life. 2. In the fatigue test of 4 mm exposed implants group, Parallel type and external connected types had higher fatigue life. 3. The fracture patterns of all 4 mm exposed implant system appeared transversely near the dead space of the fixture. With a exposing level of 2 mm, all internally connected implant systems were fractured transversely at the platform of fixture facing the abutment. but externally connected ones were fractured at the fillet of abutment body and hexa of fixture or near the dead space of the fixture. 4. Many fatigue striations were observed near the crack initiation and propagation sites. The cleavage with facet or dimple fractures appeared at the final fracture sites. 5. Effective stress of buccal site with compressive stress is higher than that of lingual site with tensile stress, and effective stress acting on the fixture is higher than that of the abutment screw. Also, maximum effective stress acting on the parallel type fixtures is higher. It is careful to use the internal type implant system in posterior area.

Development of Energy Saving Aeration Panel for Aerating in Activated Sludge System (활성 슬러지조 폭기를 위한 에너지 절감형 판형 멤브레인 산기장치의 개발)

  • Kim, Ji Tae;Tak, Hyon Ki;Kim, Jong Kuk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.6
    • /
    • pp.414-420
    • /
    • 2012
  • In an effort to commercialization of energy saving aeration apparatus, panel-type aeration membranes were prepared from polyurethane sheet of J company in Korea having tensile strength higher than $400kg_f/cm^2$ with thickness of 0.5mm. Micropores of 100 m size were made by poring technique utilizing needles. From lab-tests in 450 L water tank at temperature of $20^{\circ}C$, the performance of aeration panels at 40 L/min aeration rate showed 5 mg/L DO in less than 3 minutes approaching saturation point of 8 mg/L within 8 minutes. The results show very high efficiency with $K_{La(15)}$ ($16.34hr^{-1}$), Standard oxygen transfer efficiency (SOTE 54.7%) and Standard aeration efficienct (SAE 7.88 kg/kwh). Other pilot scale test in a $2m^3$ water tank with water temperature ($19^{\circ}C$) and aeration rate (30 L/min) showed DO exceeding 5 mg/L within 8 minutes along with $K_{La(15)}$ ($5.8hr^{-1}$), SOTE (42.1%) and SAE (6.41 kg/kwh). These efficiencies represent 2~2.5 times higher than conventional aeration devices. Especially, the achievement of higher Oxygen Transfer Rate indicate higher commercial viability. Conventional aeration devices when applied to clean water and wastewater frequently cause problems due to differences in actual Oxygen Transfer Rate. Our actual tests with $40^{\circ}C$ animal farm wastewater resulted very high efficiencies with Oxygen transfer efficiency ($OTE_f$ 22.1%) and $OTE_{pw40}$ (39.6%).

An Experimental study on the Engineering Properties of Concrete with Rice-Husk Ash (왕겨재를 혼입(混入)한 콘크리트의 공학적(工學的) 특성(特性)에 관(關)한 실험적(實驗的) 연구(硏究))

  • Sung, Chan Yong;Yoo, Byong In;Kim, Kyung Tae;Jung, Hyun Jung;Kim, Young Ik
    • Korean Journal of Agricultural Science
    • /
    • v.24 no.2
    • /
    • pp.207-217
    • /
    • 1997
  • This study was performed to evaluate the engineering properties of rice-husk ash concrete using normal portland cement, natural aggregates and rice-husk ash. The following conclusions were drawn; 1. The unit weight was in the range of $2,216{\sim}2,325kgf/m^3$, the weights of those concrete were decreased 1~6% than that of the normal cement concrete, respectively. 2. The highest strength was achieved by 10% rice-husk ash filled rice-husk ash concrete, it was increased 8% by compressive strength, 17% by tensile strength and 18% by bending strength than that of the normal cement concrete, respectively. 3. The ultrasonic pulse velocity was in the range of 3,252~4,016 m/s, which was showed about the same compared to that of the normal cement concrete. The highest ultrasonic pulse velocity was showed by 10% rice-husk ash filled rice-husk ash concrete. 4. The dynamic modulus of elasticity was in the range of $242{\times}10^3{\sim}306{\times}10^3kgf/cm^2$, which was showed about the same compared to that of the normal cement concrete. The highest dynamic modulus was showed by 10% rice-husk ash filled rice-husk ash concrete. 5. The static modulus of elasticity was in the range of $185{\times}10^3{\sim}275{\times}10^3kgf/cm^2$, which was showed about the same compared to that of the normal cement concrete. The poisson's number of rice-husk ash concrete was less than that of the normal cement concrete. The dynamic modulus was increased approximately 11~30% than that of the static modulus. 6. The durability was increased with increase of the content of rice-husk ash. The durability was increased 1.3 times by 10% rice-husk ash, 1.6times by 20% rice-husk ash filled concrete than that of the normal cement concrete. respectively.

  • PDF

Experimental studies on the characteristics of the mortar using dispersing agent of cement and high fluid admxiture (시멘트 분산제(分産劑) 및 고류동화제(高流動化劑)를 사용(使用)한 모르터의 제(諸) 성질(性質)에 관(關)한 실험적(實驗的) 연구(硏究))

  • Kim, Seong Wan;Park, In-Gyu
    • Korean Journal of Agricultural Science
    • /
    • v.11 no.1
    • /
    • pp.146-159
    • /
    • 1984
  • This study was the contrast of the compressive strength, the tensile strength, the reducing ratio and the flow of mortar using dispersing agent and high fluid admix. 1. The admix ratio of chemical admixtures espressing maximum strength appeared the same result high fluid admix SP was 0.6%, the dispersing agents LG and C211 were 0.2%, SK was 0.3%, C376 was 0.5%. But two or three times more than standard quantity made the strength's fast lowness, which influenced bad to wateriness and retard the soli-dification. 2. When proper quantity of chemical admixture was used, the increment of compressive strength was as follows. High fluid admix SP was 40.7% and the average increasing rate of dispersing agents(C211 was 19.5%, LG was 19.1%, C376 was 17.9%) was 18.7% more than normal mortar in the codition of 7 days. Also, in the condition of 28 days, high fluid admix SP was about 24.4% and the average of dispersing agents(LG was 21.1%, C211 was 16.4%, SK was 11.1%, C376 was 7.6%) was 14.1%. 3. When proper quantity of chemical admixture was used, the increment of tensile strength was as follows. High fluid admixture SP was 26.6% and the average increasing agents(SK was 16.0%, C376 was 14.7%, LG was 10%, C211 was 5.8%) was 11.6%. Also, in the condition of 28 days, high fluid admix SP was 16.5% and the average increasing rate of dispersing agents(LG was 19.1%, SK was 10.6%, C211 was 10.1%, C376 was 8.7%) was 12.1%. 4. As for the reducing ratio of each dispersing agent, he flow of mortar was less than the slump of concrete. That is; the reducing ratio of concrete was 15% adding each dispersing agent, but the reducing ratio of mortar was in the range of from 5.8% to 13.5% in 1 : 1 mixture, from 7.6% to 14.2% in 1 : 2, from 9.5% to 18.8% in 1 : 3. 5. The fluidity of each chemical admixture was as follows. High fluid admix SP in the condition of 1: 1 and 1 : 2 showed the best result than other dispersing agent and 1 : 3 showed the same result like other agents. Therefore these good dispersing agents were suitable in the prepact concrete construction using intrusion mortar.

  • PDF

Effect of Antimicrobial Microperforated Film Packaging on Extending Shelf Life of Cluster-type Tomato (Lycopersicon esculentum Mill.) (천연 항균물질 미세천공필름 포장이 송이토마토의 품질에 미치는 영향)

  • Lee, Youn-Suk;Lee, Young-Eun;Lee, Jung-Soo;Kim, Young-Shik
    • Horticultural Science & Technology
    • /
    • v.29 no.5
    • /
    • pp.447-455
    • /
    • 2011
  • To investigate the effects of the improvement of postharvest quality on fresh tomato, antimicrobial microperforated (AMP) films were prepared and their antimicrobial abilities were observed. AMP films were made by coating different types of natural antimicrobial agents such as cinnamon, clove, and clary sage essential oils into microperforated (MP) films. Cinnamon essential oil of 10% (v/v) has proven to be very effective as inhibitor of the mold growth on tomato, compared to the clove and clary sage essential oils. Quality changes of fresh tomatoes packed using the natural AMP films (AMP10 and AMP30) and MP films (MP10 and MP30) during storage were evaluated. Total microbial growth, weight loss, firmness, lycopene content, and decay rate as the major quality parameters were monitored over 9 days at $15^{\circ}C$. The oxygen transmission rates and mechanical properties between the natural AMP and MP films were also compared. There was no significant difference in change of oxygen transmission rate, tensile strength and elongation between the AMP and MP films. For storage studies, the freshness of tomato packaged in AMP30 film was higher than that in OPP film (the control), MP10, MP30, and AMP10 films. Especially, AMP30 film exhibited high efficiency compared to the control for tomato decay during storage periods. Based on the results, the microperforation and antimicrobial properties of the packaged films may significantly affect the maintenance of an optimum gas composition within the package atmosphere for increasing the storage life and quality of produce. They were also effective on the inhibition of microbial growth by controlled release of antimicrobial agent at an appropriate rate from the package into the tomato. Natural antimicrobial agent coating microperforated films could use potential functional package as a method of extending the freshness of postharvest tomato for storage.

Temperature Compensation of Optical FBG Sensors Embedded Tendon for Long-term Monitoring of Tension Force of Ground Anchor (광섬유 센서 내장형 텐던을 이용한 그라운드 앵커의 장기 장력모니터링을 위한 온도보상)

  • Sung, Hyun-Jong;Kim, Young-Sang;Kim, Jae-Min;Park, Gui-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.5
    • /
    • pp.13-25
    • /
    • 2012
  • Ground anchor method is one of the most popular reinforcing technology for slope in Korea. For the health monitoring of slope which is reinforced by permanent anchor for a long period, monitoring of the tension force of ground anchor is very important. However, since electromechanical sensors such as strain gauge and V/W type load cell are also subject to long-term risk as well as suffering from noise during long distance transmission and immunity to electromagnetic interference (EMI), optical FBG sensors embedded tendon was developed to measure strain of 7-wire strand by embedding FBG sensor into the center king cable of 7-wire strand. This FBG sensors embedded tendon has been successfully applied to measuring the short-term anchor force. But to adopt this tendon to long-term monitoring, temperature compensation of the FBG sensors embedded tendon should be done. In this paper, we described how to compensate the effect in compliance with the change of underground temperature during long-term tension force monitoring of ground anchors by using optical fiber sensors (FBG: Fiber Bragg Grating). The model test was carried out to determine the temperature sensitivity coefficient (${\beta}^{\prime}$) of FBG sensors embedded tendon. The determined temperature sensitivity coefficient ${\beta}^{\prime}=2.0{\times}10^{-5}/^{\circ}C$ was verified by comparing the ground temperatures predicted from the proposed sensor using ${\beta}^{\prime}$ with ground temperatures measured from ground thermometer. Finally, temperature compensations were carried out based on ${\beta}^{\prime}$ value and ground temperature measurement from KMA for the tension force monitoring results of tension type and compression type anchors, which had been installed more than 1 year before at the test site. Temperature compensated tension forces are compared with those measured from conventional load cell during the same measuring time. Test results show that determined temperature sensitivity coefficient (${\beta}^{\prime}$) of FBG sensors embedded tendon is valid and proposed temperature compensation method is also appropriate from the fact that the temperature compensated tension forces are not dependent on the change of ground temperature and are consistent with the tension forces measured from the conventional load cell.

An Experimental Study for Recycling of the Waste PET Bottle as a Fine Aggregate for Lightweight Concrete (폐 PET 병을 경량콘크리트용 잔골재로 재활용하기 위한 실험적 연구)

  • Choi Yun-Wang;Moon Dae-Joong;Jung Moon-Young;Cho Sun-Kyu
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.1 s.79
    • /
    • pp.79-87
    • /
    • 2004
  • The qualify of lightweight aggregate made from waste PET bottle(WPLA) and the workability, the unit weight and strength property of concrete with WPLA were investigated for the purpose of recycling the waste PET bottles as lightweight concrete fine aggregate. This study indicated a good result that WPLA should be replaced with less than $50\%$ of natural fine aggregate. When WPLA was replaced with $50\%$ of natural fine aggregate, the specific gravity and water absorption of mixed fine aggregate were greatly reduced about 23 and $75\%$ respectively in comparison with those of river sand. The quality of WPLA affected on the properties of lightweight aggregate concrete. The workability of fresh concrete with WPLA(WPLAC) was improved with increasing the replacement ratio of WPLA and water cement ratio. Slump increasing ratio of the former showed about $45 {\~} 120\%$ because that a specific gravity of fine aggregate was decreased from 2.6 to 1.7. The unit weight of concrete with $75\%$ WPLA was decreased about $17\%$ in comparison with that of control concrete. Furthermore, the compressive strength of concrete with 25 and $50 \%$ WPLA at the age of 28 days increased higher than 30 MPa regardless with water cement ratio (W/C=45, 49 and $53\%$) of this study. Specific strength of concrete with $25\%$ WPLA, $15.11{\times}10^3 MPa{\cdot}m^3/kg$, was higher than that of contro concrete in water cement ratio of $49\%$. The compressive strength-splitting tensile strength ratio and compressive strength-modulus of elasticity ratio of WPLAC were similar to that of nomal lightweight aggregate concrete. This results showed a good estimation that WPLA will be able to recycled as a fine aggregate for lightweight concrete.

Effect of Tightening Torque on Abutment-Fixture Joint Stability using 3-Dimensional Finite Element Analysis (임플란트 지대주나사의 조임회전력이 연결부 안정성에 미치는 영향에 관한 3차원 유한요소해석 연구)

  • Eom, Tae-Gwan;Suh, Seung-Woo;Jeon, Gyeo-Rok;Shin, Jung-Wook;Jeong, Chang-Mo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.2
    • /
    • pp.125-135
    • /
    • 2009
  • Statement of problem: Loosening or fracture of the abutment screw is one of the common problems related to the dental implant. Generally, in order to make the screw joint stable, the preload generated by tightening torque needs to be increased within the elastic limit of the screw. However, additional tensile forces can produce the plastic deformation of abutment screw when functional loads are superimposed on preload stresses, and they can elicit loosening or fracture of the abutment screw. Therefore, it is necessary to find the optimum tightening torque that maximizes a fatigue life and simultaneously offer a reasonable degree of protection against loosening. Purpose: The purpose of this study was to present the influence of tightening torque on the implant-abutment screw joint stability with the 3 dimensional finite element analysis. Material and methods: In this study, the finite element model of the implant system with external butt joint connection was designed and verified by comparison with additional theoretical and experimental results. Four different amount of tightening torques(10, 20, 30 and 40 Ncm) and the external loading(250 N, $30^{\circ}$) were applied to the model, and the equivalent stress distributions and the gap distances were calculated according to each tightening torque and the result was analyzed. Results: Within the limitation of this study, the following results were drawn; 1) There was the proportional relation between the tightening torque and the preload. 2) In case of applying only the tightening torque, the maximum stress was found at the screw neck. 3) The maximum stress was also shown at the screw neck under the external loading condition. However in case of applying 10 Ncm tightening torque, it was found at the undersurface of the screw head. 4) The joint opening was observed under the external loading in case of applying 10 Ncm and 20 Ncm of tightening torque. 5) When the tightening torque was applied at 40 Ncm, under the external loading the maximum stress exceeded the allowable stress value of the titanium alloy. Conclusion: Implant abutment screw must have a proper tightening torque that will be able to maintain joint stability of fixture and abutment.