• Title/Summary/Keyword: 인장결합강도

Search Result 310, Processing Time 0.033 seconds

Comparison of shear, tensile and shear/tensile combined bonding strengths in bracket base configurations (브라켓 기저부 형태에 따른 전단, 인장, 전단/인장복합결합강도의 비교)

  • Lee, Choon-Bong;Lee, Seong-Ho;Kim, Jong-Ghee
    • The korean journal of orthodontics
    • /
    • v.29 no.5 s.76
    • /
    • pp.599-611
    • /
    • 1999
  • The purpose of this study was to evaluate shear, tensile and shear/tensile combined bond strengths(SBS, TBS, S/TBS) in various orthodontic brackets bonded to human teeth with chemically cured adhesive (Ortho-one, Bisco, USA). Five types of metal brackets with various bracket base configurations (Micro-Loc base(Tomy, Japan), Chessboard base(Daesung, Korea), Non-Etched Foil Mesh base(Dentarum, Germany), Micro-Etched Foil Mesh base(Ortho Organiners, USA), Integral base(Unitek, USA)) were used in this study. Shear, tensile and shear/tensile combined bond strengths according to the direction of force were measured by universal testing machine. The bracket base surface after bond strength test were examined by stereoscope and scanning electron microscope. The assessment of resin remnant on bracket base surface was carried out by ARI(adhesive remnant index). The results obtained were summarized as follows, 1. In all brackets, SBS was in the greatest value(p<0.05), TBS was in 50% level and S/TBS was in 30% level of SBS. 2. In bond strength, Micro-Loc base bracket showed the maximum bond strength($SBS:22.86{\pm}1.37kgf,\;TBS:11.37{\pm}0.42kgf,\;S/TBS:6.69{\pm}0.34kgf$) and Integral base bracket showed the minimum bond strength($SBS:10.52{\pm}1.27kgf,\;TBS:4.27{\pm}1.08kgf,\;S/TBS:2.94{\pm}0.58kgf) (p<0.05). 3. In bond strength per unit area, Integral base bracket showed the minimum value, Micro-Loc base and Chessboard base brackets were in similar value(p>0.05). Non-Etched Foil Mesh base and Micro-Etched Foil Mesh base bracket were similar in SBS and TBS(p>0.05), but Micro-Etched Foil Mesh base bracket was greater than Non-Etched Foil Mesh base bracket in S/TBS(p<0.05). 4. Bond failure sites were mainly between bracket base and adhesive, therefore ARI scores were low.

  • PDF

Comparison of bracket bond strength in various directions of force (교정용 브라켓에 가해지는 힘의 방향에 따른 결합강도의 비교)

  • Lee, Hyun-Jung;Lee, Hyung-Soon;Jeon, Young-Mi;Kim, Jong-Ghee
    • The korean journal of orthodontics
    • /
    • v.33 no.5 s.100
    • /
    • pp.359-370
    • /
    • 2003
  • The purpose of this study was to evaluate the bond strength of orthodontic brackets bonded to metal bar with chemically cured adhesive (Ortho-one, Bisco Co, USA) in various types and directions of force application. Three types of metal bracket with different bracket base configurations; Micro-Loc base(Tomy Co, Japan), Chessboard base(Daesung Co, Korea), Non-etched Foil-Mesh base(Dentaurum, Germany); were used in this study. Peel, shear, tensile bond strengths were measured by universal testing machine and compared each other. The peel force directions applied were $0^{\circ},\;15^{\circ},\;30^{\circ},\;45^{\circ},\;60^{\circ},\;75^{\circ},\;90^{\circ}$ And then, in consideration of the different surface area of the bracket bases, the bond strength Per unit area were calculated and compared. The results obtained were summarized as follows: 1. The bond strengths according to the types and the directions of the forces were greatest at the shear forces in all three bracket base configuration groups(p<0.01). 2. As the peel force direction grew higher in degree, peel bond strength decreased. The Patterns of peel bond strength change according to force direction was similar in all three bracket base configurations. The minimum bond strength was 60 degree-peel bond strengths in all three bracket base configurations. 3. In Micro-Loc base group, minimum peel bond strength$(_{60}PBS)$ was in $29\%$ level of shear bond strength and $52\%$ level of tensile bond strength. In Chessboard base group, $_{60}PBS$ was in $34\%$ level of shear bond strength and $61\%$ level of tensile bond strength. In Non-etched Foil-Mesh base group, $_{60}PBS$ was in $34\%$ level of shear bond strength and $55\%$ level of tensile bond strength. 4. The bond strengths per unit area were lowest in Non-etched Foil-Mesh base group and highest in Chessboard base group(p<0.05). However, there were no differences in shear bond strength, tensile bond strength, $75^{\circ}\;and\;90^{\circ}$ per unit area between Micro-Loc and Chessboard base groups.

The comparison on micro-tensile bond strengths of variable adhesive systems to Class V cavity (5급 와동에서의 수종 접착 시스템의 결합강도에 관한 비교연구)

  • Kwon, Jung-Mi;Choi, Kyung-Kyu;Park, Sang-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.29 no.1
    • /
    • pp.1-12
    • /
    • 2004
  • 이 연구는 발거 소구치에서 5급 와동을 형성하여 접착 시스템 및 와동 위치에 따른 상아질에 대한 접착시스템의 미세 인장결합강도의 차이를 비교, 연구하였다. 접착방법은 resin-modified glass ionomer(Gl), compomer(부식여부에 따라 DE 및 DN군으로 분류), 그리고 상아질 접착제인 Single Bond(SB) 및 Cleayfil SE Bond(SE)와 복합레진(Clearfil AP-X)을 사용한 5개의 실험군으로 분류하였다. 소구치 협측 치경부에 wedge형태의 와동을 형성하고 5종의 접착 시스템을 제조자의 지시에 따라 적용, 충전하여 시편을 제작하여 미세인장결합강도를 측정하고, One-way ANOVA / Duncan's test로 통계분석하였다. SEM 검사는 미세인장결합강도의 시편제작과 동일한 방법으로 시편을 제작한 후 관찰하였다. 실험 결과, 상아질 접착제 및 복합레진(SB, SE)의 미세인장결합강도가 GI보다 높게 나타났고(p<0.05), 치은측이 교합측보다 더 낮게 나타났으며, CI, DE, SE에서 유의성 있게 낮게 나타났다(p<0.05). Compomer에서 conditioning 여부(DN, DE)에 따른 변화는 치은측에서만 유의차 있는 것으로 나타났다. SEM 관찰에서, 교합측의 상아세관은 결합 계면과 평행하게 주행하였고, 치은측에서는 결합계면에 수직으로 주행하는 것으로 관찰되었다.

Effects of Thermal and Mechanical Fatigue Stress on Bond Strength in Bracket Base Configurations (열적, 기계적 피로응력이 교정용 브라켓의 결합강도에 미치는 영향)

  • Kim, Jong-Ghee;Kim, Sang-Cheol
    • The korean journal of orthodontics
    • /
    • v.30 no.5 s.82
    • /
    • pp.625-642
    • /
    • 2000
  • The purpose of this study is to evaluate the effects of mechanical and thermal fatigue stress on the shear, tensile and shear-tensile combined bond strengths(SBS, TBS, CBS) in various orthodontic brackets bonded to human premolars with chemically cured adhesive(Ortho-one, Bisco, USA). Five types of commercially available metal brackets with various bracket base configurations of Photoetched base(Tomy, Japan), Non-Etched Foil Mesh base(Dentaurum, Germany), Micro-Etched Foil Mesh base(Ortho Organizers, USA), Chessboard base(Daesung, Korea), and Integral base(3M Unitek, USA) were used. Samples were divided into 3 groups, the first group was acted with shear-tensile combined loads($45^{\circ}$) of 200g for 4 weeks(mechanical fatigue stress), the second group was subjected to the 5,000 thermocycles of 15 second dwell time each in $5^{\circ}C\;and\;55^{\circ}C$ baths(thermal fatigue stress), and the third group was the control. Bond strengths were measured at the crosshead speed of 0.5mm/min. The cross-section of bracket base/adhesive interface and the fracture surface were examined with the stereoscope and the scanning electron microscope. The resin remnant on bracket base surface was assessed by ART(Adhesive Remnant Index). The obtained results were summarized as follows, 1. In static bond strength, Photoetched base bracket showed the maximum bond strength and Integral base bracket showed the minimum bond strength(p<0.05). In all brackets, shear bond strength(SBS) was in the greatest value and shear-tensile combined strength(CBS) was in the least value(p<0.05). 2. After mechanical fatigue test, Photoetched base bracket showed the maximum bond strength and Integral base bracket showed the minimum bond strength(p<0.05). In Photoetched base bracket and Micro-Etched Foil Mesh base bracket, shear bond strength(SBS), tensile bond strength(TBS) and shear-tensile combined strength(CBS) were decreased after mechanical fatigue test(p

  • PDF

Tensile bond strength of chairside reline resin to denture bases fabricated by subtractive and additive manufacturing (적층가공과 절삭가공으로 제작한 의치상과 직접 첨상용 레진 간의 인장결합강도 비교)

  • Kim, Hyo-Seong;Jung, Ji-Hye;Bae, Ji-Myung;Kim, Jeong-Mi;Kim, Yu-Lee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.58 no.3
    • /
    • pp.177-184
    • /
    • 2020
  • Purpose: The purpose of this study was to compare and evaluate the tensile bond strength of chairside reline resin to denture base resin fabricated by different methods (subtractive manufacturing, additive manufacturing, and conventional heat-curing). Materials and methods: Denture base specimens were fabricated as cuboid specimens with a width of 25 mm × length 25 mm × height 3 mm by subtractive manufacturing (VITA VIONIC BASE), additive manufacturing (NextDent Base) and conventional heat-curing (Lucitone 199). After storing the specimens in distilled water at 37℃ for 30 days and drying them, they were relined with polyethyl methacrylate (PEMA) chairside reline resin (REBASE II Normal). The subtractive and additive manufacturing groups were set as the experimental group, and the heat-curing group was set as the control group. Ten specimens were prepared for each group. After storing all bound specimens in distilled water at 37℃ for 24 hours, the tensile bond strength between denture bases and chairside reline resin was measured by a universal testing machine at a crosshead speed of 10 mm/min. The fracture pattern of each specimen was analyzed and classified into adhesive failure, cohesive failure, and mixed failure. Tensile bond strength, according to the fabrication method, was analyzed by 1-way ANOVA and Bonferroni's method (α=.05). Results: Mean tensile bond strength of the heat-curing group (2.45 ± 0.39 MPa) and subtractive manufacturing group (2.33 ± 0.39 MPa) had no significant difference (P>.999). The additive manufacturing group showed significantly lower tensile bond strength (1.23 ± 0.36 MPa) compared to the other groups (P<.001). Most specimens of heat-curing and subtractive manufacturing groups had mixed failure, but mixed failure and adhesive failure showed the same frequency in additive manufacturing group. Conclusion: The mean tensile bond strength of the subtractive manufacturing group was not significantly different from the heat-curing group. The additive manufacturing group showed significantly lower mean tensile bond strength than the other two groups.

Micro-tensile Bond Strength of Composite Resin Bonded to Er:YAG Laser-prepared Dentin (Er:YAG 레이저로 삭제된 상아질에 대한 컴포지트 레진의 미세인장결합강도에 관한 연구)

  • Min, Suk-Jin;Ahn, Yong-Woo;Ko, Myung-Yun;Park, June-Sang
    • Journal of Oral Medicine and Pain
    • /
    • v.31 no.3
    • /
    • pp.211-221
    • /
    • 2006
  • Purpose The aims of this study were to evaluate micro-tensile bond strength of composite resin bonded to dentin following high-speed rotary handpiece preparation or Er:YAG laser preparation with two different adhesive systems and to assess the influence of different Er:YAG laser energies on the micro-tensile bond strength. Materials and Methods In this study, 40 third morlars were used. Flat dentin specimans were obtained and randomly assigned to eight groups. Dentin surfaces were prepared with one of four cutting types: carbide bur, Er:YAG laser (2 W, 3 W and 4 W) and conditioned with two bonding systems, Scotchbond Multipurpose Plus (SM), Clearfil SE bond (SE) and composite resin-build ups were created. After storage for 24 hours, each specimen was serially sectioned perpendicular to the bonded surface to produce more than thirty slabs in each group. Micro-tensile bond strength test was performed at a crosshead speed of 1.0 mm/min. Micro-tensile bond strengths (${\mu}TBS$) were expressed as means$\pm$SD. Data were submitted to statistical analysis using two-way ANOVA, one-way ANOVA, Student-Newman-Keuls' multiple comparison test and t-test. Results and Conclusion 1. Regardless of bonding systems, the ${\mu}TBS$ according to cutting types were from highest to lowest : 3 W, 2 W, Bur, and 4 W. In addition, there was no significant difference between Bur and 4 W (p<0.001). 2. Regardless of cutting types, SM showed significantly higher ${\mu}TBS$ than SE (p<0.001). 3. Bonding to dentin conditioned with SM resulted in higher ${\mu}TBS$ for 3 W compared to Bur, 2 W, and 4 W. There was no significant difference between 2 W and Bur (p<0.001). 4. Bonding to dentin conditioned with SE resulted in higher ${\mu}TBS$ for 3 W compared to 2 W, 4 W, and Bur. Bur exhibited significant lower ${\mu}TBS$ than all other cutting types. There were no significant differences between 3 W, 2 W and between 4 W and Bur (p<0.001). 5. The ${\mu}TBS$ of laser cutting groups were shown in order from highest to lowest: 3 W, 2 W and 4 W in two bonding systems. There was no significant difference between 2 W and 3 W in SE (p<0.001). : The ${\mu}TBS$ of composite resin bonded dentin was significantly affected by interaction between the cutting type and bonding system. In the range of 2 W-3 W, cavity preparation of the Er:YAG laser seems to supply good adhesion of composite resin restoration no less than bur preparation. In particular, if you want to use the self-etching system, including Clearfil SE bond for the purpose of a simplification of the bonding procedures and prevention of adverse effects by excessive etching, an Er:YAG laser may offer better adhesion than a bur.

THE INFLUENCE OF CAVITY CONFIGURATION ON THE MICROTENSILE BOND STRENGTH BETWEEN COMPOSITE RESIN AND DENTIN (와동의 형태가 상아질과 복합레진 사이의 미세인장결합강도에 미치는 영향)

  • Kim, Ye-Mi;Park, Jeong-Won;Lee, Chan-Young;Song, Yoon-Jung;Seo, Deok-Kyu;Roh, Byoung-Duck
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.5
    • /
    • pp.472-480
    • /
    • 2008
  • This study was conducted to evaluate the influence of the C-factor on the bond strength of a 6th generation self-etching system by measuring the microtensile bond strength of four types of restorations classified by different C-factors with an identical depth of dentin. Eighty human molars were divided into four experimental groups, each of which had a C-factor of 0.25, 2, 3 or 4. Each group was then further divided into four subgroups based on the adhesive and composite resin used. The adhesives used for this study were AQ Bond Plus (Sun Medical, Japan) and XenoIII (DENTSPLY, Germany). And composite resins used were fantasists (Sun Medical, Japan) and Ceram-X mono (DENTSPLY, Germany). The results were then analyzed using one-way ANOVA, a Tukey's test, and a Pearson's correlation test and were as follows. 1. There was no significant difference among C-factor groups with the exception of groups of Xeno III and Ceram-X mono (p<0.05). 2. There was no significant difference between any of the adhesives and composite resins in groups with C-factor 0.25, 2 and 4. 3. There was no correlation between the change in C-factor and microtensile bond strength in the Fantasista groups. It was concluded that the C-factor of cavities does not have a significant effect on the microtensile bond strength of the restorations when cavities of the same depth of dentin are restored using composite resin in conjunction with the 6th generation self-etching system.

THE EFFECTS OF COLLAGENASE AND ESTERASE ON THE MICROTENSILE BOND STRENGTH IN DENTIN BONDING (상아질 접착에서 collagenase와 esterase가 미세인장결합강도에 미치는 영향)

  • Jung, Young-Jung;Hyun, Hong-Keun;Kim, Young-Jae;Kim, Jung-Wook;Lee, Sang-Hoon;Kim, Chong-Chul;Hahn, Se-Hyun;Jang, Ki-Taeg
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.34 no.2
    • /
    • pp.285-291
    • /
    • 2007
  • The purpose of this study was to evaluate the effect of collagenase and esterase on the microtensile bond $strength({\mu}TBS)$ in dentin bonding. After resin composites were bonded to occlusal dentin. ${\mu}TBS$ specimens were formed and stored in PBS, collagenase, or esterase solution After 4-week storage, ${\mu}TBS$ was determined and, the results were as follows : 1. ${\mu}TBS$ values of Single Bond 2 were lower than those of Clearfil SE Bond for all storage medium (p<0.05). 2. In Single Bond 2 group, collagenase solution lowered bond strength more than PBS and esterase solution (p>0.05). 3. In Clearfil SE Bond group, esterase solution lowered bond strength more than PBS(p>0.05). Collagenase solution lowered bond strength more than esterase solution(p>0.05) and PBS(p<0.05).

  • PDF

Effect of specimen preparation method on the microtensile bond strength of veneering ceramic to zirconia (시편 제작 방법이 지르코니아 코어와 비니어링 세라믹의 미세 인장결합강도에 미치는 영향)

  • Kim, Ki-Yeon;Yeo, In-Sung;Kim, Sung-Hun;Han, Jung-Suk;Lee, Jai-Bong;Yang, Jae-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.49 no.2
    • /
    • pp.114-119
    • /
    • 2011
  • The aim of this study was to investigate effect of specimen preparation method on the microtensile bond strength of veneering ceramic to zirconia core. Materials and methods: Cylindrical Lava zirconia block (3M ESPE, Seefeld, Germany) was cut into discs using a diamond disc. After sintering, the core specimens were placed in an adjustable mold and veneered with Lava ceram (3M ESPE, Seefeld, Germany). The disc shaped specimen of group 1 was cut into microbars ($1{\times}1{\times}7\;mm^3$) using a low speed diamond disc under water cooling (n = 15). The specimen of group 2 was cut into microbars ($1.2{\times}1.2{\times}7\;mm^3$) in the same way. Whereafter the microbars were trimmed ($1{\times}1{\times}7\;mm^3$) using a thick diamond disc under water cooling (n = 15). The microtensile bond strength was tested in a microtensile tester (Instron 8848, $Instron^{(R)}$ Co., Norwood, USA). Fractured microtensile specimens were analyzed under a stereomicroscope (MZ6, Leica Microsystems GmbH, Wetzlar, Germany) at magnification ${\times}30$. Results: The microtensile bond strength of group 1 ($28.8{\pm}7.0\;MPa$) was significantly higher than group 2 ($11.0{\pm}33\;MPa$) (P=.00). Conclusion: It appears advisable to avoid the trimming action, especially high strength ceramic specimens.

Measurement of Contact Angle and Bond Strength Using 3 Different Self-Etching Primer (3종의 자가부식 프라이머의 상아질계면 접촉각 및 미세인장결합강도에 관한 연구)

  • Chang, Seok-Woo;Kwon, Ho-Beom;Yoo, Hyun-Mi;Park, Dong-Sung;Oh, Tae-Seok;Bae, Kwang-Shik
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.24 no.1
    • /
    • pp.105-112
    • /
    • 2008
  • The purpose of this study was to evaluate the contact angle made by 3 kinds of self etching primers (Clearfil SE Bond, AdheSE, and Tyrian) on dentin and to measure the microtensile bond strength of resin composite to dentin using these self-etching primers. Contact angle between each of 3 self etching primers and polished dentin surface was measured (n=30) by contact angle analyzer and the result was analyzed by One-way ANOVA. For the measurement of microtensile bond strength, polished dentin surface was treated with each of 3 self etching primers and dentin adhesives. Z-250 composite resin was built-up with a height of 5 mm on the adhesive-treated surface and light cured for 40s with a halogen light curing unit. Thereafter, each tooth was sectioned into slabs perpendicular to the bonded interface and trimmed (n=45). The microtensile bond strength was measured with universal testing machine and the result was analyzed with Kruskal-Wallis test. AdheSE group showed the highest contact angle followed by Clearfil SE group and Tyrian group (p<0.05). AdheSE group and Clearfil SE group showed significantly higher microtensile bond strength than Tyrian group (P<0.05).