• Title/Summary/Keyword: 인삼사포닌 Rg1

Search Result 83, Processing Time 0.027 seconds

Immunochemical Assay for Korean Ginseng Saponins I Synthesis of Ginsenoside-Protein Conjugate (인삼사포닌의 면역화학적 분석법(I) 인삼사포닌-단백질 결합체의 합성)

  • 한병훈;한용남
    • YAKHAK HOEJI
    • /
    • v.25 no.2
    • /
    • pp.43-47
    • /
    • 1981
  • In an attempt to obtain a saponin antigen, ginsenoside Rg$_{1}$ of Korean ginseng was condensed with bovine serum albumin through a series of modification in the side chain structure of ginsenoside Rg$_{1}$ to prepare a reactive intermediate $Rg_{1}$ azide. The modification of ginsenoside $Rg_{1}$[1] yielded $Rg_{1}$ decacetate [II], mp 252, $Rg_{1}$ acetate-glycol [III], mp 263, $Rg_{1}$ acetate-trisnoraldehyde [IV], mp 231, $Rg_{1}$ acetate-carboxylic acid [V], mp 282, $Rg_{1}$ acetate-methyl ester [VI], mp 271, $Rg_{1}$ hydrazide [VII], mp 220, and finally a reactive intermediate $Rg_{1}$ azide [VIII].

  • PDF

A Study on the Saponin Contents and Antioxidant Activity of the Ginseng and Extruded Ginseng by Using Different Solvents for Extraction (추출 용매에 따른 인삼과 압출 성형 인삼의 사포닌 함량 및 항산화 활성 연구)

  • Kim, Sung-Hwan
    • The Korean Journal of Food And Nutrition
    • /
    • v.24 no.4
    • /
    • pp.528-534
    • /
    • 2011
  • This study was conducted to investigate the changes in saponin content and antioxidant activity of crude ginseng and extruded ginseng by using different solvent extraction methods. Each of the fractions was first extracted by 80% ethanol followed by ether treatment to remove the lipid components. Water soluble components were separated by ethylacetate and water saturated butanol. Four fraction, including 80% ethanol, ethylacetate, butanol and water were obtained from crude and extruded ginsengs to analyze saponin content and antioxidant activity. Saponin content and antioxidant capacity of each of the four fractions were measured by LC/MS analysis and ORAC(Oxygen Radical Absorbance Capacity) assay, respectively. It was found that a major portion of saponin was present in ethyl acetate and water saturated butanol fractions. When extracted by 80% ethanol, ginsenoside Rb1 and Rg1 were mostly found in crude ginseng, while ginsenoside Re and Rb1 were detected in extruded ginseng. Even though Rh1 and Rg3 were found in a very small quantity in crude ginseng, there was a significant quantity of both in extruded ginseng when extracted by 80% ethanol. Similar tendency was also observed in extruded ginseng fraction when extracted with ethyl acetate and butanol. In crude ginseng, the level of Rg1 was the highest among other ginsenosides upon extraction by ethyl acetate, while Rh1 and Rg3 were predominantly found by employing similar solvent extraction in the extruded ginseng. Also, Rg1, Re and Rb1 were also found in the extruded ginseng with small quantity. Rg1, Re and Rb1 were found in crude ginseng by butanol extraction, while Rb1 and Re were extracted from the extruded ginseng. Overall, there was no difference in the saponin content between crude ginseng and extruded ginseng when extracted by butanol and water, but twice as much of saponin was obtained by 80% ethanol extraction and 6 times more saponin were obtained in ethyl acetate fraction in the extruded ginseng. Antioxidant capacity of crude ginseng as determined by ORAC assay was higher in 80% ethanol(high in many different kinds of biological compounds) and water saturated butanol(high in polar saponin) fractions than the ethyl acetate and water fractions. No difference in antioxidant capacity was observed between crude and extruded ginseng. However, antioxidant capacity of ethyl acetate and water fractions in extruded ginseng was significantly higher than crude ginseng($P$ >0.05). All the fractions in both, crude and extruded ginseng possessed antioxidant capacity and even water fractions that contained almost no saponin had some antioxidant capacity. While determining correlation coefficient between fractions in extruded ginseng by Pearson correlation, it was observed that 80% ethanol fraction was in correlation with ethyl acetate($P$ >0.01) and ethanol($P$ >0.001) and in the case of ethylacetate, correlation was observed only with butanol fraction($P$ >0.05).

Saponin Contents of Root and Aerial Parts in Panax ginseng and Panax quinquefolium (고려인삼과 미국삼의 부위별 Saponin 함량)

  • Ahn, Sang-Deug;Choi, Kwang-Tae
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.29 no.4
    • /
    • pp.342-349
    • /
    • 1984
  • In order to obtain the basic information for the development of ginseng varieties with high saponin contents. saponin contents and ginsenosides of Panax ginseng (Korean ginseng) and Panax quinquefolium (American ginseng) grown under the same environmental conditions were analysed. Crude saponin contents of root and aerial parts were more in Panax quinquefolium than in Panax ginseng, and aerial parts had more saponin contents in comparison with a root. Protopanaxatriol saponin was greatly more in the aerial parts of ginseng while more amount of protopanaxadiol saponins were detected in the root. As for the ginsenosides, the patterns of ginsenosides detected in total saponin of the aerial parts were not different between two species, Panax ginseng and Panax quinquefolium, but the root ginsenoside patterns were quite different. Ginsenosides such as Rg$_2$, R$_{f}$. R$_{a}$ and R$_{o}$ were not detected in the root of Panax quinquefolium (American ginseng).).).).

  • PDF

Ginsenoside Contents of Korean White Ginseng and Taegeuk Ginseng with Various Sizes and Cultivation Years (국내산 백삼과 태극삼의 크기 및 연근별 인삼사포닌 함량)

  • Hwang, Jin-Bong;Ha, Jae-Ho;Hawer, Woo-Derck;NahmGung, Bae;Lee, Boo-Yong
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.508-512
    • /
    • 2005
  • Ginsenoside composition and contents of Korean white and taegeuk ginsengs were investigated to establish Chinese pharmaceutical standards for import of Korean ginseng. Total ginsenoside-Rg1, Re, and Rb1 of all Korean white and taegeuk ginseng samples were higher than guideline of Chinese standard of 0.4%, $Mean{\pm}S.D.$ values of Rg1, Re, and Rb1 of Korean white ginseng were $232.7{\pm}110.2,\;235.3{\pm}101.5,\;and\;280.1{\pm}121.3\;mg%$, respectively. Ratio of Rg1 to Re of Korean white ginseng was 1.02. $Mean{\pm}S.D.$ values of Rg1, Re, and Rb1 of Korean taeguek ginseng were $262.1{\pm}127.2,\;213.1{\pm}55.7,\;and\;279.9{\pm}92.1\;mg%$, respectively.

Identification of Saponin and Sapogenin in Root, Leaf and Stem of Ginseng by Thin Layer Chromatography (얇은막 크로마토그래피에 의한 인삼(人蔘)의 근(根) 엽(葉) 및 경(莖)의 saponin 및 sapogenin화합물(化合物) 동정(同定))

  • Choi, Kang-Ju;Kim, Seok-Chang;Kim, Man-Wook;Nam, Ki-Yeul
    • Applied Biological Chemistry
    • /
    • v.30 no.4
    • /
    • pp.340-344
    • /
    • 1987
  • Saponins of ginseng root, leaf and stem were identified by TLC. Eleven unknown spots were detected in ginseng leaf and ten unknown spots in ginseng stem on TLC besides seven ginsenosides such as $ginsenoside-Rg_1,\;-Rf,\;-Re,\;-Rd,\;-Rc,\;-Rb_2,\;and\;-Rb_1$ which are contained in ginseng root. $Ginsenoside-Rg_3\;and\;-Rg_2$ were identified on TLC from mild hydrolysates with 50% acetic acid of total saponins from ginseng root, leaf and stem. Meanwhile, panaxadiol, panaxatriol and oleanolic acid were identified from hydrolysates with 7% ethanolic sulfuric acid of total saponin of ginseng root, while panaxadiol and panaxatriol from those of total saponins of ginseng leaf and stem.

  • PDF

An Rapid Extraction of Ginseng Saponin Compounds (인삼사포닌 화합물의 신속한 추출)

  • Kwak, Yi-Seong;Kim, Mi-Ju;Kim, Eun-Hee;Kim, Yeoung-Ae
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.6
    • /
    • pp.1327-1329
    • /
    • 1997
  • A new rapid saponin extraction method was developed with using of organic solvent and waring blonder. There was a good correlation between previous distillation method and this method in f major ginsenosides ($Rb_1$, $Rb_2$, Rc, Rd, Re, Rg1) contents. When the ratio of methanol and chloroform was 7:3, this method showed similar saponin contents (total major. ginsenosides contents) comparing with distillation method. Contents of total major ginsenosides were 2.41% in this method and 2.54% in distillation method. However, crude saponin content of this method was higher than that of distillation method.

  • PDF

Changes of Ginsenosides and Physiochemical Properties in Ginseng by New 9 Repetitive Steaming and Drying Process (새로운 자동 구증구포방법에 의한 인삼사포닌의 변환 및 이화학적 특성)

  • Jin, Yan;Kim, Yeon-Ju;Jeon, Ji-Na;Wang, Chao;Min, Jin-Woo;Jung, Sun-Young;Yang, Deok-Chun
    • Korean Journal of Plant Resources
    • /
    • v.25 no.4
    • /
    • pp.473-481
    • /
    • 2012
  • This study was conducted to investigate the contents of ginsenosides and physiochemical properties of Panax ginseng after 9 times steaming and drying treatment by using the new auto steamer which is more fast and simple than previous report. In the process of steaming and drying, the content of six major ginsenosides such as Rg1, Re, Rb1, Rc, Rb2 and Rd were gradually decreased. On the other hand, the content of seven minor ginsenosides includes Rh1, 20(S)-Rg2, 20(R)-Rg2, 20(S)-Rg3, 20(R)-Rg3, Rk1 and Rg5 were gradually increased. We observed the protopanxadiol ginsenosides such as Rb1, Rb2, Rc and Rd were converted into 20(S)-Rg3, 20(R)-Rg3, Rk1 and Rg5; similarly protopanxatriol ginsenosides of Rg1 and Re were converted into Rh1, 20(S)-Rg2 and 20(R)-Rg2. Based on the result of fresh ginseng, the contents of reducing sugar, acidic polysaccharide and total phenolic compounds were gradually increased and reached to maximum at 7 times repetitive steaming process of the fresh ginseng. Whereas DPPH radical scavenging activities were gradually decreased to 68% at 7 times steaming. New auto 9 repetitive steaming and drying process has similar production with original methods, but content of benzo(a)pyrene were not almost detected comparatively taking less time. The present results suggested that this method is best for the development of value-added ginseng industry related products.

Changes of saponin Contents in Panax ginseng Leaves by Different Harvesting Months (인삼엽의 채엽시기에 따른 사포닌 성분의 함량 및 조성)

  • 장현기
    • The Korean Journal of Food And Nutrition
    • /
    • v.11 no.1
    • /
    • pp.82-87
    • /
    • 1998
  • To study of production of Panax ginseng leaf tea, after harvested the leaves in July, August, and September as ripening season, the content and composition of ginseng saponin were investigated. 1. Crude saponin contents in the leaves were a about 16.5%, and they were found to be lower in the leaf harvested in September than those harvested in July or August. 2. As similar patterns were observed with month to month in ginsenoside, sum of major ginsenosides of -Re, -Rd and -Rg1 was fixed about 70% of saponin at harvested in each month. And minor components were ginsenoside -Rb1, -Rb2 and -Rc as in order. 3. The ratio of protopanaxadiol(PD)/protopanaxatriol(PT) was revealed reduction of 1.13 of harvested in July to 0.85 of those in September gradually. The contents of protopanaxadiol were high in the leaves of August and protopanaxatriol was high in those September.

  • PDF

Analysis of Diol- and Triol-Saponins in Ginseng (인삼의 Diol계 및 Triol계 사포닌의 분리분석)

  • Park, Jeong-Il;Park, Man-Gi;Han, Byeong-Hun
    • Journal of Ginseng Research
    • /
    • v.15 no.3
    • /
    • pp.257-262
    • /
    • 1991
  • 1) 인삼 사포닌을 5% 황산으로 가수분해하여 TMS화 한 후 GC로 분석한 결과 인삼중의 모든 사포닌을 diol계 사포닌과 triol계 사포닌으로 나누어 분석할 수 있었다. 2) 시료중의 전체 diol계(PD)와 triol계(PT) 사포닌을 ginsenoside Rb$_1$과 Rg$_1$의 양으로 각각 환산하여 표시하고 미삼에는 백삼에 비해 diol계 사포닌의 함량이 많은 것을 이용하여 PD/PT글 구하고 여기에서 구해진 비를 이용하여 시료중의 백삼 및 미삼의 이론적 함량을 구할 수 있었다. 3) 이 방법의 검출 한계는 백삼의 양으로 0.14$\mu$g이었다.

  • PDF

Determination of Ginseng Saponins by Reversed-Phase High Performance Liquid Chromatography (역상 고속액체크로마토그라피를 이용한 홍삼 사포닌의 정량)

  • Kim, Cheon-Suk;Kim, Se-Bong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.9 no.1
    • /
    • pp.21-25
    • /
    • 2001
  • Major saponins in ginseng were analysed using reverse phase high performance liquid chromatography with binary mobile phase gradient control system instead of normal phase column. The optimum condition were as following : reverse phase column; ${\mu}{\beta}ondapak\;C_{18}$ column (Waters, $3.9mm{\times}300\;mm,\;5{\mu}m$), methyl cyanaide/water binary mobile phase gradient control system, solvent flow rate; 1.5 ml/min, and UV($203{\mu}m$ ) detector. The complete separation of ginsenoside $Rb_1,\;Rb_2,\;Rc,\;Rd,\;Re,\;Rf\;and\;Rg_1$ was achieved within 55 min. The Regression coefficients of the calibration curves for seven ginsenosides were 0.99.

  • PDF