• Title/Summary/Keyword: 인발시험 모델링

Search Result 11, Processing Time 0.026 seconds

A study on a reasonable modeling method of fully grouted rockbolt (전면접착형 록볼트의 거동 특성을 고려한 합리적인 모델링 방법에 대한 연구)

  • Hong-Joo Lee;Kyung-Nam Kang;Ki-Il Song;Sang-Don Lee
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.1
    • /
    • pp.19-37
    • /
    • 2024
  • Rockbolts are the primary-supports in NATM tunnels and are widely used at tunnel construction sites. Among the rockbolts methods applied in domestic tunnel design, fully grouted rockbolts are the most representative and frequently used. Fully grouted rockbolts exhibit relative behavior between the bolt and the ground due to the grout material. However, during numerical analysis for tunnel design, fully grouted rockbolts are often modeled in a way that does not reflect their behavior characteristics. This may result in underestimating or overestimating the force of the supports. Based on a literature review, it was analyzed that fully grouted rockbolts are modeled using truss element or cable element. To analyze the effect of grout properties of cable elements on rockbolts behavior, this paper compared the behavior of rockbolts in two models: one estimating grout properties based on rockbolt pull-out test data, and another assuming complete adhesion between the rockbolts and the ground by applying large grout properties. Under identical tunnel conditions, the numerical analysis was conducted by modeling the fully grouted rockbolts differently using truss and cable elements, and the tunnel behavior was analyzed. The research results suggest that modeling fully grouted rockbolts as a function of the interface effect between the bolts and the ground, specifically considering grout, is desirable. The use of pull-out test data to simulate the behavior of actual fully grouted rockbolts was considered as a valid approach.

Load Transfer of Ground Anchors in Clay (점토지반에 설치된 앵커의 하중전이에 관한 연구)

  • Kim, Nak-Kyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.3
    • /
    • pp.145-155
    • /
    • 2000
  • 지반과 구조물을 일체화시키는데 사용하는 앵커는 앵커체와 지반의 마찰력에 의해서 구조물을 지지하는 역할을 하며 앵커의 하중과 변형의 관계를 규명하기 위해서는 앵커의 마찰력 분포의 변화(하중전이)가 중요한 요소가 된다. 하중 재하시 앵커체에 발생하는 하중전이 분포는 앵커의 인발 지지력과 밀접한 관계가 있고 정착장의길이, 지반 조건 등에 따라 분포 양상이 변하기 때문에 하중 정이를 이해하기 위해서는 강선과 그라우트의 하중분포 그리로 앵커 그라우트체와 지반과의 마착력 분포를 알아야 한다. 본 연구는 미국 Texax A&M University의 점성토지반에 계측기가 장착된 10개의 그라운드 앵커를 설치하여 인발시험을 수행하였다. 앵커의 자유장 강선에 작용하는 응력, 그라우트체에 작용하는 응력, 그리고 정착장 강선의 응력을 계측하여 강선과 그라우트의 정착응력 및 그라우트와 지반에서의 마찰력 분포를 구함으로써 강선-그라우트-지반의 복합적인 거동에 따른 각 하중 단계마다의 하중전이를 얻어냈다. 또한 현장시험 결과의 역해석을 통하여 강선과 그라우트 사이의 하중과 변위의 관계와 그라우트와 지반의 하중-변위 관계를 분석하여 그라운드 앵커의 인발 특성을 예측 할 수 있는 수치해석 기법을 모델링하여 제시하였다.

  • PDF

Load Transfer of Tension and Compression Anchors in Weathered Soil (인장형 앵커와 압축형 앵커의 하중전이에 관한 연구)

  • 김낙경
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.3
    • /
    • pp.59-68
    • /
    • 2001
  • 풍화토 지반에 설치된 그라운드 앵커의 하중전이 현상을 규명하기 위하여 성균관대학교 지반시험장에서 인발시험을 수행하였다. 지반과 구조물을 일체화시키는데 사용하는 앵커는 앵커체와 지반의 마찰력에 의해서 구조물을 지지하는 역할을 하며 앵커의 하중과 변형의 관계를 규명하기 위해서는 앵커의 마찰력 분포의 변화(하중전이)가 중요한 요소가 된다. 하중 재하시 앵커체에 발생하는 하중전이 분포는 앵커의 인발 지지력과 밀접한 관계가 있고 앵커체의 종류(인장형 또는 압축형), 정착장의 길이, 지반 조건 등에 따라 분포 양상이 변하기 때문에 하중전이를 이해하기 위해서는 강선과 그라우트의 하중분포 그리고 앵커 그라우트체와 지반과의 마찰력 분포를 알아야 한다. 앵커의 자유장의 강선에 작용하는 응력, 그라우트체에 작용하는 응력, 그리고 정착장 강선의 응력을 계측하여 강선과 그라우트의 정착응력 및 그라우트와 지반에서의 마찰력 분포를 구함으로써 강선-그라우트-지반의 복합적인 거동에 따른 각 하중 단계마다의 하중전이 분포를 구하였다. 또한 현장시험 결과의 신뢰성 확보를 위하여 수치해석 모델링을 통하여 해석을 수행하여 비교하였다.

  • PDF

Behavior Characteristics of Underreamed Ground Anchor through Field Test and Numerical Analysis (현장시험 및 수치해석을 통한 확공지압형 앵커의 거동특성)

  • Kim, Gyuiwoong;Ahn, Kwangkuk;Min, Kyongnam;Jung, Chanmuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.8
    • /
    • pp.37-44
    • /
    • 2013
  • The superiority of bearing ground anchor system has been recognized for the stability and economical efficiency since 1950s in Japan, Europe and etc. The ground anchor introduced in Korea, however, has the structural problem that the tensile strength comes only from the ground frictional force caused by the expansion of the wedge body and it is impossible to evaluate the bearing resistance because the adhering method of the anchor body to hollow wall is not appropriate. In this study, the underreamed ground anchor system was developed so that the bearing pressure of ground anchor can exert as much as possible. And the in-situ tests were performed to evaluate the pullout behavior characteristics and to verify the decreasing effect of the bonded length. The pullout tests were performed with the non-grouted tension condition and grouted tension condition in order to identify the pull-out resistance of each conditions. In addition, it was compared with the results of friction anchor. Finally, the numerical analysis was fulfilled to verify the bearing effect at the bonded part through the detailed modeling by PLAXIS-2D, which is general finite element method analysis program.

Applicability Study of Geotextile Mesh Soil Nail on Slope Reinforcement Using Numerical Analysis (수치해석을 이용한 토목섬유망 네일의 사면보강에 대한 적용성 연구)

  • You, Kwang Ho;Jung, Yeun Hak;Ha, Ji Young
    • Tunnel and Underground Space
    • /
    • v.25 no.3
    • /
    • pp.264-274
    • /
    • 2015
  • In this study, the applicability of geotextile mesh soil nails on slopes was evaluated by numerical analysis to reduce environmental problems which a general soil nailing might produce and to improve its economical efficiency and construction convenience. To this end, in situ pull-out tests were conducted for both general soil nail and geotextile mesh soil nail and their pull-out characteristics were analyzed. Also, finite difference method was used to verify the suitability of numerical simulation. Parameters for nail and ground conditions were selected and sensitivity analysis was performed for the evaluation of slope stability. In addition, analysis was performed by limit equilibrium method which is widely used for slope stability analysis in practice. As a result, if the nail diameter was same, there is no big difference between geotextile mesh soil nails and general soil nails in terms of slope stability. Therefore it can be expected that geotextile mesh soil nails could be effective for slope reinforcement since they could keep a slope as stable as general soil nails and give better economical efficiency and construction convenience than general soil nails.

Evaluation of Pull-Out Strength of Connections with Roof Cladding using Honey Comb Panel Secured Cool Roof Performance (Cool Roof 성능을 확보한 Honey Comb Panel 지붕 접합부의 인발 성능 평가)

  • Lee, In Ho;Park, Sang Woo;Ko, Kwang Il;Chung, Mi Ja;Lee, Eun Taik
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.3
    • /
    • pp.139-149
    • /
    • 2016
  • Roof cladding of buildings are required for the measures about the 'screw pull-out' which causes the casualties and the property damage by typhoons. In this study, the pull-out resistance was increased by increasing the penetration depth of the screw installing a ironware called 'insert nut' on the roof cladding frame. Tensile tests were conducted to compare the pull-out strengths of a general screw-joint and a nut insert joint. Roof cladding that is actually being used in the field was produced using the 'solid work' and then the roof claddings using a general screw-joint and a nut insert joint were compared by a static test and dynamic test.

Numerical Analysis for the Pullout Behavior and Failure Mechanism of Ground Anchor (그라운드 앵커의 인발거동 및 파괴메카니즘에 대한 수치해석)

  • Park, Byung-Soo;Shim, Do-Sik
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.2
    • /
    • pp.69-76
    • /
    • 2010
  • This study is an numerical study of predicting the behavior of anchor embedded in weathered rocks, subjected to uplift loads, about ultimate pullout capacity and the failure mechanism. Factors influencing the behavior of anchors were investigated by reviewing the data about in-situ anchor tests performing numerical modelling with changing the bondage length of anchor, diameter of anchor body and diameter of tendon, and by correlations between those factors were evaluated to apply them to predict the behavior of anchors. As results of numerical analysis, a linear relationship between bondage length, diameter of anchor body and diameter of tendon with ultimate pullout capacity was obtained on the one hand, from the result of numerical analysis changing the Young's modulus of weathered rock, this parameter was found to influence to load-displacement and ultimate pullout capacity within the range of 10%, which was not so significant to affect.

Characteristics of Soil-Nailing Applied to Extension-Grouting Method (확장그라우팅 공법이 적용된 쏘일네일링의 거동특성)

  • Lee, Hyoungkyu;Lee, In
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.3
    • /
    • pp.53-62
    • /
    • 2010
  • In the early 1990s, it was first introduced the soil nailing method for the slope stability and ground excavation and widely used as method of reinforcement. Also the application of soil nailing has been improved and developed. Most recently used for grout soil nailing greatly improve the methods and techniques for self-improvement techniques are classified as soil nailing. As the representative for the grout pressure method to improve the join method pressure grouting and improved method for the self-drilled soil nailing, removable soil nailing, extension grout method. Three dimensional finite difference analysis was used to evaluate characteristics of pull-out behavior of extension grout method. In this paper, it was described a characteristics of pull-out behavior of soil nailing with extension grout method through the result of numerical method.

A Fundamental Study on Behavior Characteristics of the Geosynthetic Composite Reinforcement in the Weathered Granite Backfill Soils (화강풍화토 뒤채움흙 내부 토목섬유 복합보강재의 거동특성에 관한 기초연구)

  • 김홍택;김승욱;전한용;이인모
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.5
    • /
    • pp.171-191
    • /
    • 1999
  • The final aim of this research is to systematize the reinforced-earth wall system using the geosynthetic composite reinforcement in the weathered granite backfill soils having relatively large amount of fines. As a staged endeavour to accomplish this purpose, laboratory pull-out tests and finite element modeling are carried out in the present study focusing on the analyses of friction characteristics associated with interaction behaviors of the geosynthetic composite reinforcement composed of geogrid with a superior function in tensile resistance and geotextile with sufficient drainage effects. In addition, drainage effects of the geotextile below geogrid are examined based on the analysis of finite difference numerical modeling. From the present investigation, it is concluded that the geosynthetic composite reinforcement in the weathered granite backfills may possibly be used to achieve effects on both a reduction of deformations and an increase of the tensile resistance, together with drainage effects resulting from the geotextile.

  • PDF

A Experimental and Analytical Study on One directional Bond Behavior of Grid typed CFRP Reinforcement (격자형 탄소 보강재의 일방향 부착특성에 대한 실험 및 해석적 연구)

  • Chi Hoon Noh;Nak Seop Jang;Hongseob Oh
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.2
    • /
    • pp.77-86
    • /
    • 2024
  • In this study, authors attempted to determine the bond behavior characteristics to utilize Grid typed CFRP reinforcement as an alternative to steel rebar used as concrete reinforcement. Since it is difficult to understand the influence of the transverse grid length of the Grid typed CFRP reinforcement in the existing numerical analysis proposal for bond behavior, a nonlinear 3D model was created and finite element analysis was performed. To perform the analysis, the analysis was conducted by inputting a nonlinear material model and modeling the bond interface characteristics between the Grid typed CFRP reinforcement and concrete and comparing them with the actual direct pull-out test results. The bond behavior characteristics of the Grid typed CFRP reinforcement were found to be very dominated by the factors of the transverse grid, and showed a tendency to continuously increase load.