• Title/Summary/Keyword: 인듀서(inducer)

Search Result 72, Processing Time 0.022 seconds

Performance Test of a Turbo Pump Inducer (터보펌프 인듀서의 성능 실험)

  • Kang, Shin-Hyoung;Yeom, Ki-Tae
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.637-642
    • /
    • 2001
  • Performance and cavitation characteristics of a turbo pump inducer which is designed for oxygen pump is experimentally investigated. It is found that the static performance of inducer is dependent on the location of inlet pressure measurement and that enough distance from inducer is ensured for accurate evaluation of performance. With the increase of flow rate. NPSH tends to decrease as opposed to pump characteristics, which seems to be due to the cavitation region.

  • PDF

Performance and Flow Test of a Turbo Pump Inducer (터보 펌프 인듀서의 성능 및 유동실험)

  • Kang, Shin-Hyoung;Yeom, Ki-Tae
    • The KSFM Journal of Fluid Machinery
    • /
    • v.6 no.1 s.18
    • /
    • pp.6-13
    • /
    • 2003
  • Variations of performance and NPSH of a turbo pump inducer were measured. The flows at the inlet and the outlet of the inducer were also experimentally investigated by measuring flow velocity and angle using a 3-hole Pilot tube. Performance and velocity profiles show a similarity for tested speeds, however not for efficiencies. Strong recirculating flows appears at the inlet of inducer even at the design condition. Cavitating flows were also visualized at several NPSH's.

Effects of number of blades on the performance of the turbopump inducer (터보펌프용 인듀서 블레이드 수가 성능에 미치는 영향에 대한 연구)

  • Choi, Chang-Ho;Kim, Jin-Han
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.2
    • /
    • pp.52-57
    • /
    • 2009
  • The effects of number of blades on the hydraulic performance of the inducer were studied using a computational method. Inducers with number of blades from 2 to 4 were used for computations and the hydraulic performances of the inducers were compared. The computational results showed that the hydraulic performance decreased due to the increase of the skin friction loss at blade passages as the blade number increased. The results also showed that the strength of the backflow became weak because of the decrease of unfavorable pressure gradient as the blade number increased.

Hydraulic Performance Test of a Turbopump (터보펌프의 수력 성능시험)

  • Hong Soon-Sam;Kim Dae-Jin;Kim Jin-Sun;Choi Chang-Ho;Kim Jinhan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.243-247
    • /
    • 2005
  • Hydraulic performance test was conducted for a fuel pump of a liquid rocket engine turbopump. The pump driven by an electric motor was tested in water environment. It is experimentally shown that the inducer had very small effect on the pimp's head and efficiency but great effect on the pump's cavitation performance. Additionally, inducer test was carried out to investigate the effect of the inducer on the pump in detail, and it was found that the pump had a critical cavitation number when the inducer head dropped by $55\%$.

  • PDF

Hydrodynamic Performance Test of a Turbopump (터보펌프의 수력 성능시험)

  • Hong Soon-Sam;Kim Dae-Jin;Kim Jin-Sun;Choi Chang-Ho;Kim Jin-Han
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.1
    • /
    • pp.18-22
    • /
    • 2006
  • Hydrodynamic performance test was conducted for a fuel pump of a liquid rocket engine turbopump. The pump driven by an electric motor was tested using water. It is experimentally shown that the inducer had very small effect on the pump's head and efficiency but great effect on the pump's cavitation performance. Additionally, inducer test was carried out to investigate the effect of the inducer on the pump in detail, and it was found that the pump reached a critical cavitation number when the inducer head dropped by 55%.

Cavitation test of a high pressure turbo-pump (터보 펌프의 캐비테이션 실험)

  • Lee, Jong-Min;Kang, Shin-Hyoung;Lee, Kyoung-Hoon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.353-360
    • /
    • 2003
  • Hydraulic performance and cavitation characteristics of fuel pump in turbo-pump were studied experimentally. The fuel pump has a centrifugal impeller with a separate inducer. In this paper, flow characteristics of inducer and impeller was experimentally investigated separately and together. Especially static pressure distribution of Inducer was examined in non-cavitation and cavitation conditions.

  • PDF

Numerical Study on the Hydrodynamic Performance of a Forward-Sweep Type Inducer for Turbopumps (터보펌프용 전진익형 인듀서의 성능에 대한 수치해석적 연구)

  • Choi, Chang-Ho;Kim, Jin-Han
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.11
    • /
    • pp.74-79
    • /
    • 2005
  • Computational studies on the hydrodynamic behavior of the forward-sweep inducers for the rocket-engine turbopump are presented in comparison with the conventional backward- sweep inducers. In the present study, two kinds of forward-sweep inducers are designed and numerically investigated. Forward-sweep inducers have bigger tip solidity compared to backward-sweep inducers even with shorter axial length due to their forward-sweep leading edge profiles. It is shown that back flows at the inlet decreases dramatically for forward- sweep inducers. And the low pressure region at the back flow are also decreased, which is assumed to promote the suction performance of the inducers. It seems that the hub located upstream of the tip at the leading edge induces pre whirl at the inlet blade tip for the backward sweep inducer. And this pre whirl leads to the big back flow.

Effect of Solidity on the Performance of Turbopump Inducer (현절비가 터보펌프 인듀서의 성능에 미치는 영향)

  • Hong, Soon-Sam;Choi, Chang-Ho;Kim, Jin-Han
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.4
    • /
    • pp.382-388
    • /
    • 2004
  • The hydraulic and suction performance of an inducer varies sensitively with the inducer geometry and this paper deals with solidity as the inducer geometry parameter. The typical performance characteristics of a basic inducer was investigated and tests with another three inducers of which the solidity is different from each other were performed, so the effect of solidity on the inducer performance was experimentally investigated. For a fixed flow coefficient, required NPSH of the inducer did not follow the conventional similarity rule, so this paper suggested another empirical formula. The hydraulic and suction performance was measured at four cases of the tip solidity ranged from 1.32 to 2.76. As long as the tip solidity had the value above 1.84, the hydraulic and suction performance of the inducer increased with decrease in the tip solidity. With further decrease in the tip solidity up to 1.32, however, inducer head decreased and the suction performance dropped sharply.

Study on the Forward-sweep Inducer for Turbopumps (터보펌프용 전진익형 인듀서에 대한 연구)

  • Kim, Jin-Sun;Hong, Soon-Sam;Kim, Jin-Han;Choi, Chang-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.9 no.2 s.35
    • /
    • pp.25-29
    • /
    • 2006
  • Computational and experimental studies on the forward-sweep inducer for the rocket-engine turbopump are presented in comparison with the conventional backward-sweep inducer. Computational results show that back flows at the inlet decrease in the case of forward-sweep inducers compared to the back-ward inducer. Moreover, the low pressure region at the back flow is decreased, which is presumed to improve the suction performance of the inducers. Experimental results show that the suction performance of the forward-sweep inducer is almost the same as that of the backward-sweep inducer although it has smaller inlet tip diameter and shorter length. The efficiency of the forward-type inducer is found better than that of the backward-sweep inducer due to the small size of back flows.

Numerical Simulation of Cavitating Flow Around Turbopump Inducer (터보펌프용 인듀서에 대한 캐비테이션 유동해석)

  • Choi, Chang-Ho;Noh, Jun-Gu;Kim, Jin-Han
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.3
    • /
    • pp.49-53
    • /
    • 2010
  • The computational studies on the cavitating flow around a turbopump inducer were performed to see the effect of the cavitation on the performance of the inducer. The development of cavities around the inducer blades and the head drop of the inducer are observed as the inlet pressure reduces. The change of the backflow at the inducer inlet is also observed with the development of the cavities. The size of the backflow reduces as the inlet pressure is reduced due to the development of the cavities around the blades. The predicted suction performances of the inducer were compared with the experimental results. The results show that the computations overestimate the suction performances of the inducer than the experiments.