• Title/Summary/Keyword: 인공지

Search Result 3,554, Processing Time 0.03 seconds

Postprocessing for Tonality and Repeatability, and Average Neural Networks for Training Multiple Songs in Automatic Composition (자동작곡에서 조성과 반복구성을 위한 후처리 방법 및 다수 곡 학습을 위한 평균 신경망 방법)

  • Kim, Kyunghwan;Jung, Sung Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.6
    • /
    • pp.445-451
    • /
    • 2016
  • This paper introduces a postprocessing method, an iteration method for melody, and an average neural network method for learning a large number of songs in order to improve musically insufficient parts in automatic composition using existing artificial neural network. The melody of songs composed by artificial neural networks is produced according to the melodies of trained songs, so it can not be a specific tonality and it is difficult to have a repetitive composition. In order to solve these problems, we propose a postprocessing method that converts the melody composed by artificial neural networks into a melody having a specific tonality according to music theory and an iteration method for melody by iteratively composing measure divisions of artificial neural networks. In addition, the existing training method of many songs has some disadvantages. To solve this problem, we adopt an average neural network that is made by averaging the weights of artificial neural networks trained each song. From some experiments, it was confirmed that the proposed method solves the existing problems.

Digital signal change through artificial intelligence machine learning method comparison and learning (인공지능 기계학습 방법 비교와 학습을 통한 디지털 신호변화)

  • Yi, Dokkyun;Park, Jieun
    • Journal of Digital Convergence
    • /
    • v.17 no.10
    • /
    • pp.251-258
    • /
    • 2019
  • In the future, various products are created in various fields using artificial intelligence. In this age, it is a very important problem to know the operation principle of artificial intelligence learning method and to use it correctly. This paper introduces artificial intelligence learning methods that have been known so far. Learning of artificial intelligence is based on the fixed point iteration method of mathematics. The GD(Gradient Descent) method, which adjusts the convergence speed based on the fixed point iteration method, the Momentum method to summate the amount of gradient, and finally, the Adam method that mixed these methods. This paper describes the advantages and disadvantages of each method. In particularly, the Adam method having adaptivity controls learning ability of machine learning. And we analyze how these methods affect digital signals. The changes in the learning process of digital signals are the basis of accurate application and accurate judgment in the future work and research using artificial intelligence.

Development of Elementary Machine Learning Education Program to Solve Daily Life Problems Using Sound Data (소리 데이터를 기반으로 일상생활 문제를 해결하는 초등 머신러닝 교육 프로그램 개발)

  • Moon, Woojong;Ko, Seunghwan;Lee, Junho;Kim, Jonghoon
    • Journal of The Korean Association of Information Education
    • /
    • v.25 no.5
    • /
    • pp.705-712
    • /
    • 2021
  • This study aims to develop artificial intelligence education programs that can be easily applied in elementary schools according to the trend of the times called artificial intelligence. The training program designed the purpose and direction based on the analysis results of the needs of 70 elementary school teachers according to the steps of the ADDIE model. According to the survey, elementary school students developed a machine learning education program to set sound data as the theme of the most accessible in their daily lives and to learn the principles of artificial intelligence in solving problems using sound data in real life. These days, when the need for artificial intelligence education emerges, elementary machine learning education programs that solve daily life problems based on sound data developed in this study will lay the foundation for elementary artificial intelligence education.

A Study on the Autonomous Decision Right of Emotional AI based on Analysis of 4th Wave Technology Availability in the Hyper-Linkage (무한연결시 4차 산업기술의 이용 가능성 분석을 통한 감성 인공 지능의 자율 결정권에 관한 연구)

  • Seo, Dae-Sung
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.8
    • /
    • pp.9-19
    • /
    • 2019
  • The effects of artificial intelligence technology is social science research as research on the impact on industry and changes in daily life, etc. This means that developing 'emotion AI' will prepare 'next-generation 3D-vector-sensitive AI'. This suggests the main keywords of the tertiary AI decision-making power. Particularly important results will be achieved because of the importance of current unethical learning and the implementation of decision-making systems that reflect ethical value judgments. This is a data based simulation, and required (1)Available data, (2)the technology for the goal of simulation. This takes into account the general content of the intended simulation based research. Currently, existing researches focus on meaningful research motivation, but this study presents the direction of technology. So, empirical analysis is consistent with the decision-making power of each country vs. new technology firms for AI on ehtic responsibility. As a result, there is a need for a concrete contribution and interpretation that can be achieved for the ethic Responsibility, on the technical side of AI / ML. In AI decision making, analytic power of human empathy should be included tech own trust.

Development of Design thinking-based AI education program (디자인 씽킹 기반 인공지능 교육 프로그램 개발)

  • Lee, Jaeho;Lee, Seunghoon
    • Journal of The Korean Association of Information Education
    • /
    • v.25 no.5
    • /
    • pp.723-731
    • /
    • 2021
  • In this study, the AI education program for elementary school students was developed and applied by introducing the design thinking process, which is attracting attention as a creative problem solving process. A design thinking-based AI education program was developed in the stages of Understanding AI, Identifying sympathetic problems, Problem definition, Ideate, Prototype, Test and sharing, and the development program was applied to elementary school students in 4th-6th grade. As a result of pre- and post-testing of students' computational thinking skills to confirm the effectiveness of the program, computational thinking skills increased by grade level, and students experienced a process of collaboration for creative problem solving based on insights gained from sympathetic problem finding. In addition, it was possible to get a glimpse of the attitude of using AI technology to solve problems, and it was confirmed that ideas were generated in the prototype stage and developed through communication between team members. Through this, the design thinking-based AI education program as one of the AI education for elementary school students guarantees the continuity of learning and confirms the possibility of providing an experience of the creative problem-solving process.

A Study of Unified Framework with Light Weight Artificial Intelligence Hardware for Broad range of Applications (다중 애플리케이션 처리를 위한 경량 인공지능 하드웨어 기반 통합 프레임워크 연구)

  • Jeon, Seok-Hun;Lee, Jae-Hack;Han, Ji-Su;Kim, Byung-Soo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.5
    • /
    • pp.969-976
    • /
    • 2019
  • A lightweight artificial intelligence hardware has made great strides in many application areas. In general, a lightweight artificial intelligence system consist of lightweight artificial intelligence engine and preprocessor including feature selection, generation, extraction, and normalization. In order to achieve optimal performance in broad range of applications, lightweight artificial intelligence system needs to choose a good preprocessing function and set their respective hyper-parameters. This paper proposes a unified framework for a lightweight artificial intelligence system and utilization method for finding models with optimal performance to use on a given dataset. The proposed unified framework can easily generate a model combined with preprocessing functions and lightweight artificial intelligence engine. In performance evaluation using handwritten image dataset and fall detection dataset measured with inertial sensor, the proposed unified framework showed building optimal artificial intelligence models with over 90% test accuracy.

A meta-study on the analysis of the limitations of modern artificial intelligence technology and humanities insight for the realization of a super-intelligent cooperative society of human and artificial intelligence (인간 및 인공지능의 초지능 협력사회 실현을 위한 현대 인공지능 기술의 한계점 분석과 인문사회학적 통찰력에 대한 메타 연구)

  • Hwang, Su-Rim;Oh, Hayoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.8
    • /
    • pp.1013-1018
    • /
    • 2021
  • Due to the recent accident caused by the automated vehicle, discussions on the ethical aspects of AI have been actively underway. This paper confirms that AI is inevitably connected to ethical components through the concepts and techniques related to robots-AI, and argues that ethical aspects are built-in, not post facto. Furthermore, this devises a solution to the trolley dilemma that can serve as a clue to ethical problems associated with automated vehicles. Preferentially, that process contains writing Bayesian networks. Next, only important and influential data are left after the pre-processing stage, and crowd-sourcing & extrapolation is used to calculate the exact figures of the networks. Through this process, this argues that humans' subjects are certainly included in implementing algorithms and models and discusses the necessity and direction of engineering liberal arts, especially education of ethics that distinguished from major education to prevent distortions and biases abouts AI systems.

Development and Application of AI Education Program for Image Recognition for Low Grade Elementary School Students (초등학교 저학년을 위한 이미지 인식 이해 AI 교육 프로그램 개발 및 적용)

  • Jeong, Lansu;Ma, Daisung
    • Journal of The Korean Association of Information Education
    • /
    • v.26 no.1
    • /
    • pp.1-10
    • /
    • 2022
  • With the development of artificial intelligence, society is moving toward another world that has never existed before. As a result, interest in artificial intelligence education is also increasing, and research on artificial intelligence education is being conducted more actively in Korea. However, many studies have been conducted focusing on the upper grades of elementary school, and curriculum and programs for the lower grades are still insufficient. Therefore, in this study, a total of 6 sessions of artificial intelligence programs were developed to understand image recognition for the lower grades of elementary school. The validity was secured by conducting expert validity for 8 experts, and the effectiveness was verified through the pre-post-response sample t-test by applying it to the experimental group. As a result, both artificial intelligence understanding and artificial intelligence attitude showed statistically significant results, and both the interest and difficulty of educational programs were found to be suitable for lower grade students. Based on the contents of this study, it is necessary to review its application and effectiveness in various environments through follow-up studies in the future.

Development and Application of Data Collection Education Programs for Lower Grades in Elementary School Students (초등학교 저학년을 위한 데이터 수집 교육 프로그램 개발 및 적용)

  • Yi, Seul;Ma, Daisung
    • Journal of The Korean Association of Information Education
    • /
    • v.26 no.1
    • /
    • pp.45-53
    • /
    • 2022
  • The need for artificial intelligence education has emerged, and countries around the world are announcing artificial intelligence strategies. Artificial intelligence education is reflected in the main points of the 2022 revised curriculum general published in Korea. Along with this interest, programs related to artificial intelligence education are being developed, but it is difficult to find artificial intelligence programs for lower grades of elementary school. This study aims to develop a data collection education program for the lower grades of elementary school through a series of analysis-design-development-application-evaluation processes and apply it to first-grade elementary school students to verify its effectiveness. Through the developed program, it is expected that students will be able to understand and feel interested in artificial intelligence, and develop an attitude of collecting data in their daily lives through the process of searching for various types of data in their daily lives.

AI-based Cybersecurity Solution for Industrial Control System (산업제어시스템을 위한 인공지능 보안 기술)

  • Jo, Bu-Seong;Kim, Mun-Suk
    • Journal of Internet Computing and Services
    • /
    • v.23 no.6
    • /
    • pp.97-105
    • /
    • 2022
  • This paper explains trends in security technologies for ICS. Since ICS is usually applied to large-scale national main infrastructures and industry fields, minor errors caused by cyberattack could generate enormous economic cost. ICS has different characteristic with commonly used IT systems, so considering security threats of ICS separately with IT is needed for developing modern security technology. This paper introduce framework for ICS that analyzes recent cyberattack tactics & techniques and find out trends in Intrusion Detection System (IDS) which is representative technology for ICS security, and analyzes AI technologies used for IDS. Specifically, this paper explains data collection and analysis for applying AI techniques, AI models, techniques for evaluating AI Model.