• Title/Summary/Keyword: 이진패턴

Search Result 400, Processing Time 0.025 seconds

A Dynamic Three Dimensional Neuro System with Multi-Discriminator (다중 판별자를 가지는 동적 삼차원 뉴로 시스템)

  • Kim, Seong-Jin;Lee, Dong-Hyung;Lee, Soo-Dong
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.7
    • /
    • pp.585-594
    • /
    • 2007
  • The back propagation algorithm took a long time to learn the input patterns and was difficult to train the additional or repeated learning patterns. So Aleksander proposed the binary neural network which could overcome the disadvantages of BP Network. But it had the limitation of repeated learning and was impossible to extract a generalized pattern. In this paper, we proposed a dynamic 3 dimensional Neuro System which was consisted of a learning network which was based on weightless neural network and a feedback module which could accumulate the characteristic. The proposed system was enable to train additional and repeated patterns. Also it could be produced a generalized pattern by putting a proper threshold into each learning-net's discriminator which was resulted from learning procedures. And then we reused the generalized pattern to elevate the recognition rate. In the last processing step to decide right category, we used maximum response detector. We experimented using the MNIST database of NIST and got 99.3% of right recognition rate for training data.

Real-time Traffic Sign Recognition using Rotation-invariant Fast Binary Patterns (회전에 강인한 고속 이진패턴을 이용한 실시간 교통 신호 표지판 인식)

  • Hwang, Min-Chul;Ko, Byoung Chul;Nam, Jae-Yeal
    • Journal of Broadcast Engineering
    • /
    • v.21 no.4
    • /
    • pp.562-568
    • /
    • 2016
  • In this paper, we focus on recognition of speed-limit signs among a few types of traffic signs because speed-limit sign is closely related to safe driving of drivers. Although histogram of oriented gradient (HOG) and local binary patterns (LBP) are representative features for object recognition, these features have a weakness with respect to rotation, in that it does not consider the rotation of the target object when generating patterns. Therefore, this paper propose the fast rotation-invariant binary patterns (FRIBP) algorithm to generate a binary pattern that is robust against rotation. The proposed FRIBP algorithm deletes an unused layer of the histogram, and eliminates the shift and comparison operations in order to quickly extract the desired feature. The proposed FRIBP algorithm is successfully applied to German Traffic Sign Recognition Benchmark (GTSRB) datasets, and the results show that the recognition capabilities of the proposed method are similar to those of other methods. Moreover, its recognition speed is considerably enhanced than related works as approximately 0.47second for 12,630 test data.

Implementation of a Face Authentication Embedded System Using High-dimensional Local Binary Pattern Descriptor and Joint Bayesian Algorithm (고차원 국부이진패턴과 결합베이시안 알고리즘을 이용한 얼굴인증 임베디드 시스템 구현)

  • Kim, Dongju;Lee, Seungik;Kang, Seog Geun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.9
    • /
    • pp.1674-1680
    • /
    • 2017
  • In this paper, an embedded system for face authentication, which exploits high-dimensional local binary pattern (LBP) descriptor and joint Bayesian algorithm, is proposed. We also present a feasible embedded system for the proposed algorithm implemented with a Raspberry Pi 3 model B. Computer simulation for performance evaluation of the presented face authentication algorithm is carried out using a face database of 500 persons. The face data of a person consist of 2 images, one for training and the other for test. As performance measures, we exploit score distribution and face authentication time with respect to the dimensions of principal component analysis (PCA). As a result, it is confirmed that an embedded system having a good face authentication performance can be implemented with a relatively low cost under an optimized embedded environment.

Mining Frequent Trajectory Patterns in RFID Data Streams (RFID 데이터 스트림에서 이동궤적 패턴의 탐사)

  • Seo, Sung-Bo;Lee, Yong-Mi;Lee, Jun-Wook;Nam, Kwang-Woo;Ryu, Keun-Ho;Park, Jin-Soo
    • Journal of Korea Spatial Information System Society
    • /
    • v.11 no.1
    • /
    • pp.127-136
    • /
    • 2009
  • This paper proposes an on-line mining algorithm of moving trajectory patterns in RFID data streams considering changing characteristics over time and constraints of single-pass data scan. Since RFID, sensor, and mobile network technology have been rapidly developed, many researchers have been recently focused on the study of real-time data gathering from real-world and mining the useful patterns from them. Previous researches for sequential patterns or moving trajectory patterns based on stream data have an extremely time-consum ing problem because of multi-pass database scan and tree traversal, and they also did not consider the time-changing characteristics of stream data. The proposed method preserves the sequential strength of 2-lengths frequent patterns in binary relationship table using the time-evolving graph to exactly reflect changes of RFID data stream from time to time. In addition, in order to solve the problem of the repetitive data scans, the proposed algorithm infers candidate k-lengths moving trajectory patterns beforehand at a time point t, and then extracts the patterns after screening the candidate patterns by only one-pass at a time point t+1. Through the experiment, the proposed method shows the superior performance in respect of time and space complexity than the Apriori-like method according as the reduction ratio of candidate sets is about 7 percent.

  • PDF

Detecting Host-based Intrusion with SVM classification (SVM classification을 이용한 호스트 기반 침입 탐지)

  • 이주이;김동성;박종서;염동복
    • Proceedings of the Korea Institutes of Information Security and Cryptology Conference
    • /
    • 2002.11a
    • /
    • pp.524-527
    • /
    • 2002
  • 본 연구에서는 Support Vector Machine(SVM)을 이용한 호스트 기반 침임 탐지 방법을 제안한다. 침입 탐지는 침입과 정상을 판단하는 이진분류 문제이므로 이진분류에 뛰어난 성능을 발휘하는 SVM을 이용하여 침입 탐지 시스템을 구현하였다. 먼저 감사자료를 system call level에서 분석한 후, sliding window기법에 의해 패턴 feature를 추출하고 training set을 구성하였다. 여기에 SVM을 적용하여 decision model을 생성하였고, 이에 대한 판정 테스트 결과 90% 이상의 높은 침입탐지 적중률을 보였다.

  • PDF

An Enhanced Method for Linear Binary Neural Network Synthesis (향상된 선형 신경 회로망 합성 방법)

  • 박병준;이정훈
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.10a
    • /
    • pp.107-110
    • /
    • 1997
  • 본 논문에서는 선형 이진 신경회로망 (Linear Binary Neural Network)을 최소화 하기 위하여, 입력패턴의 그룹화 가능성을 측정하는 조건함수를 제시한다. 또한 이 조건식으로 그룹화 우선순위를 정하고 iteration을 통해 신경회로망을 합성하는 MSP Term Grouping Algorithm을 보인다. 여려가지 예제에 대한 실제적 합성 실험을 통해 기존의 알고리즘과 제시된 알고리즘을 비교한 결과는 제시된 알고리즘이 기존의 알고리즘 보다 작은 크기의 선형 이진 신경회로망을 합성할 수 있는 향상된 방법임을 보여준다.

  • PDF

Design of safety-critical system using Design Pattern (디자인 패턴을 이용한 안전필수 시스템 설계)

  • Lee, Hyuk;Lee, Jeanho;Hwang, Jong-Gyu;Choi, Jin-Young
    • Annual Conference of KIPS
    • /
    • 2010.04a
    • /
    • pp.1013-1016
    • /
    • 2010
  • 시스템의 올바른 동작이 반드시 보장되어야 하는 안전필수 시스템의 안전성과 신뢰성을 확보하기 위한 방법으로 정형기법이 있다. 정형기법은 수학과 논리를 기초로 하는 방법으로, 초심자에게는 다소 난해하고 어려운 부분이 있다. 이와 같은 어려움을 조금이나마 덜 수 있는 방법으로 본 논문에서는 정형기법을 적용한 디자인 패턴을 제안한다.

Chunking Using Automatic Constructed Syntactic Pattern Dictionary and Rule (자동 구축된 구문패턴사전과 규칙을 이용한 구묶음)

  • Im, Ji-Hui;Choe, Ho-Seop;Lee, Jung-Chul;Ock, Cheul-Young
    • Annual Conference on Human and Language Technology
    • /
    • 2004.10d
    • /
    • pp.35-39
    • /
    • 2004
  • 본 논문은 실용적인 구문분석기의 전단계로서, 자동 구축된 구문패턴사전과 규칙을 이용하여 구묶음하는 방법을 제안한다. 우선 규칙은 구문분석 말뭉치(30,875어절)를 대상으로 자동 추출된 고빈도의 규칙(Rewriting Rule)을 본 논문에 맞게 수동으로 구축하였다. 규칙은 조건부, 행위부로 이루어진 이진 규칙(binary rule)의 형태를 이루며, 명사구(NP), 수식어구(AP, DP), 인용구(X), 용언구(VP, VC)을 대상으로 15개를 구축하였다. 그리고 구문패턴은 중심어와 중심어 선행 요소의 특성뿐만 아니라 중심어 후행 요소도 고려하여 형식화시킨 것으로, 중심어의 복합용언 여부에 따라 일반용언패턴과 본+보조용언패턴으로 구분한다. 부분적인 언어 현상의 처리보다는 실세계에서 사용되는 수많은 문장들에 내재되어 있는 매우 광범위한 언어 현상의 처리를 하기 위해, 구문패턴은 형태소주석 말뭉치(460만 어절)을 대상으로 자동 구축하였다. 구축된 구문패턴사전과 규칙을 이용하여 구묶음을 수행한 결과 정확율 83.09%가 나타났다.

  • PDF

An OSD Menu Verification Technique using a FMM Neural Network (FMM 신경망을 이용한 OSD 메뉴 검증기법)

  • Lee Jin-Seok;Park Jung-Min;Kim Ho-Joon
    • Annual Conference of KIPS
    • /
    • 2006.05a
    • /
    • pp.315-318
    • /
    • 2006
  • 본 논문에서는 TV OSD(On Screen Display) 메뉴 자동검증 시스템에서 문자패턴의 실시간 인식을 위한 방법론을 고찰한다. 이는 일반적인 문자인식 문제와는 달리 시스템 환경에 대한 몇 가지 가정과 제약조건을 고려해야 한다. 예컨대 문제의 특성상 카메라 및 TV 제어 기기부의 동작과 연동하는 작업 스케쥴링 기능과 실시간 분석기능 등의 요건은 시스템개발을 복잡하게 하는 반면, 주어진 OSD 메뉴 데이터로부터 검증과정은 미지 패턴에 대한 인식과정을 단순화하여 일종의 판정(decision) 문제로 고려될 수 있게 한다. 본 연구에서는 인식의 방법론으로서 수정된 구조의 FMM 신경망을 적용한다. 이는 하이퍼박스 기반의 패턴 분류기로서 간결하면서도 강력한 학습기능을 제공한다. 기존의 FMM 모델이 갖는 단점인 학습패턴에서 특징분포와 빈도를 고려하지 못한다는 점을 개선하여, 특징과 하이퍼박스간의 가중치 요소를 고려한 활성화 특성을 정의한다. 또한 실제 데이터를 사용한 실험결과를 통해 제안된 이론의 유용성을 고찰한다.

  • PDF

Pattern Recognition of US Dollars based on Neural Networks (신경회로망을 이용한 미 달러화의 패턴 인식)

  • Lee, Woo-Ram;Kwon, Young-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.161-162
    • /
    • 2007
  • 본 논문에서는 인간 두뇌와 같이 패턴을 인식할 수 있는 능력을 가진 신경 회로망 모델을 구현하고, 이를 바탕으로 시중의 저렴한 화상 카메라를 이용하여 미 달러화를 인식할 수 있는 시스템을 개발하였다. 제안된 시스템은 저화질 영상에서 캡쳐된 이미지를 이진영상처리 과정을 거치게 함으로써 패턴인식의 정확성 향상을 가져올 수 있었으며, 인공지능의 대표적 알고리즘인 신경회로망을 이용하여 종류별 미 달러화의 세부적인 차이를 감지하고 화폐를 정확하게 인식할 수 있도록 하였다. 각 화폐로부터 추출해 낸 특징을 신경회로망을 통해 학습시키고, 이를 통해 미 달러화의 패턴인식 능력을 실험을 통해 확인해본 결과 90%에 가까운 높은 성공률로 정확하게 인식함을 확인할 수 있었다.

  • PDF