• Title/Summary/Keyword: 이종재료

Search Result 1,704, Processing Time 0.024 seconds

Dynamic Failure Behavior of Ceramic/Fiber-Reinforced Composites under High Speed Impact Loading (고속충격에 의한 세라믹/섬유강화 복합재료의 동적파손 거동)

  • Kim, Hui-Jae;Yuk, Jong-Il;Lee, Seung-Gu
    • Korean Journal of Materials Research
    • /
    • v.7 no.9
    • /
    • pp.795-804
    • /
    • 1997
  • 전면재를 알루미나, 후면재를 Kevlar또는 S-2 유리 섬유강화 복합재료로 접합한 이종재료 장갑에 대하여 알루미나의 두께 변화와 복합재료의 적층구조에 따른 고속충격 특성 변화에 대하여 연구하였다. 또한 시험재료의 동적 관통현상을 분석하기 위하여 고속촬영기법이 이용되었다. 시험결과, 전면재인 알루미나는 충격탄자 직경의 80% 상당하는 두께(본 실험에서는 6nm)인 경우 양호한 방탄성능을 보였다. 후면재인 복합재료는 섬유를 alternating 주조로 적층한 경우가 laminar구조로 적층한 것에 비하여 더 우수한 방탄성능을 나타내었다.

  • PDF

Mechanical Properties and Wear Performance of the Al7075 Composites Reinforced with Bimodal Sized SiC Particles (이종입자 강화 SiC/Al7075 금속복합재료의 압축특성 및 마모특성 연구)

  • Lee, Donghyun;Cho, Seungchan;Kim, Yangdo;Lee, Sang-Kwan;Lee, Sang-Bok;Jo, Ilguk
    • Composites Research
    • /
    • v.30 no.5
    • /
    • pp.310-315
    • /
    • 2017
  • In this study, we have investigated microstructure, mechanical properties and wear characteristic of aluminum metal matrix composites with a high volume fraction and uniformly dispersed SiC particles which produced by a liquid pressing process. The volume fraction of bimodal SiC/Al7075 composite was 12% higher than that of the monomodal SiC/Al7075 composite and a compressive strength is increased about 200 MPa. As a result of the abrasion test, the wear width and depth of the bimodal SiC/Al7075 composite were $285.1{\mu}m$ and $0.45{\mu}m$, respectively. The coefficient of friction of bimodal SiC/Al7075 was 0.16.

The optimization of processing condition of dissimilar material bonding using the 60 kHz ultrasonic transducer (60 kHz 초음파 공구 혼을 이용한 이종재료접합의 공정조건 최적화)

  • Lee, DongWook;Jeon, EuySick
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.3
    • /
    • pp.991-996
    • /
    • 2013
  • In this paper, the ultrasonic horn having the natural frequency with 60 [kHz] for the dissimilar material bonding of the glass and solder tried to be designed. The ultrasonic horn was designed through the relational formula including the aspect ratio of the input terminal and output terminal, length of the ultrasonic horn. The modal analysis was performed for the propriety analysis of the designed horn. The parameters and response was set through the basic experiment. The dissimilar material bonding strength analysis using the ultrasonic transducer was done. The optimal process parameters having maximum bonding strength was derived.

A Study on the Determination and Characteristics of Stress Intensity Factors and Stress Singularities for V-notched Cracks in Dissimilar Materials (이종재료간 V-노치균열의 응력특이성과 응력강도계수의 특성 및 결정에 관한 연구)

  • 조상봉;윤성관
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.10
    • /
    • pp.1890-1899
    • /
    • 1992
  • In bonded structures, there are V-notched cracks in dissimilar materials and the stress concentration of these V-notched cracks causes to occur interface cracks in dissimilar materials Therefore the strength evaluation of V-notched cracks in dissimliar materials seems to be important. The stress fields of a V-notched cracks is known as .sigma.$_{ij}$ .var. K $r_{p-1}$,where K is the stress intensity factor and p-1 is the stress singularity. When the distance, r, approaches to 0 at the stress fields of V-notched cracks, the stresses become infinites by two more stress singularities of p-1 and p-1 is no more -0.5. Stress singularities and stress intensity factors for V-notched cracks in dissimilar materials are treated and discussed. The Newton-Raphson method which is an efficient numerical method for solving a non-linear equation is used for solving stress sigularities. And stress intensity factors are solved by the collocation method using the Newton-Raphson and least squares method. The effects of stress intensity factors and stress singularities on stress fields of V-notched cracks in dissimilar materials are studied by using photoelasic isochromatic frings patterns obtained from computer graphics.s.

Evaluation of the Structural Safety of a Vessel with Different Material(Cr-13)-Supplemented Screw Thread (이종재료가 보충된 나사산을 갖는 용기의 구조안전성 평가)

  • Choi, Yong Hoon;Bae, Jun Ho;Kim, Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.4
    • /
    • pp.375-382
    • /
    • 2015
  • The dome and neck part of a vessel is generally formed by a hot spinning process with a seamless tube. However, as studies on and design data from the hot spinning process are insufficient, this process has been performed based on trial and error and the experiences of field engineers. Changes in the inner diameter from the bottom to the top of the neck have occurred mainly because of the characteristics of the hot spinning process due to the high-speed rotation of the rollers. In this study, a theoretical and finite element analysis of the vessel is conducted with different material(Cr-13)-supplemented screw threads for tapping and to reduce shape errors. Based on the results, tne structural safety under the operating conditions is evaluated.

A Parametric Study on the Strength of Single-Lap Bonded Joints of Carbon Composite and Aluminum (탄소 복합재-알루미늄 단일겹침 접착 체결부의 강도에 관한 인자연구)

  • Kim, Tae-Hwan;Seong, Myeong-Su;Choi, Jin-Ho;Kweon, Jin-Hwe
    • Composites Research
    • /
    • v.20 no.5
    • /
    • pp.34-42
    • /
    • 2007
  • Strength and failure of adhesively bonded carbon composite-to-aluminum single-lap joints were studied by experiment. The main objective of this study is to investigate the effect of various parameters such as curing pressure for bonding, overlap lengths, and adherend thickness on the failure loads and modes of the bonded Joints with dissimilar materials. Experimental results show that the bonding pressure for composite-to-aluminum dissimilar materials should be 4 atm at the lowest. Failure load of the joints increases as the overlap length increases, but the strength (failure load divided by bonded area) decreases rapidly after the overlap width-to-length ratio is greater than 1. When the adherend thickness increase to double, bonding strength increase $12{\sim}55%$. Major failure mode of the joints is the delamination in the composite laminate and the location of delamination goes deeper into the laminates as the bonding pressure and overlap length increase.

열하중을 받는 이종재 V-노치 균열의 응력강도계수 해석

  • 문창호;조상봉;김진광;노홍래
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.240-240
    • /
    • 2003
  • V-노치 균열에서 열하중이 작용하는 경우는 비제차형 경계조건의 문제가 되고, 이 조건에 대한 방정식의 일반해를 구하기 위해서 재차형 연립방정식에 대한 일반해(Homogeneous solution)와 비제차형 연립방정식에 대한 특수해(Particular solution)의 두 가지 해를 구할 수 있다. 이들 해는 V-노치 균열에 대한 고유치가 되고 이 고유치가 중복근을 가지게 되는 경우에는 로그항(1n[r])이 나타나게 되고 이 항에 의해서 응력을 무한대로 발산시키므로 이를 대수응력특이성이라 한다. 열하중이 작용할 때 대수응력특이성을 나타내는 로그항의 계수가 영(0)이 되어 대수응력특이성이 사라지게 되므로 V-노치 선단에서의 응력특이성은 고유치와 그에 대한 고유벡터에 의해 결정된다. 본 논문에서는 비정상상태 열하중이 가해지는 등방성 이종재료 내의 V-노치 균열문제에서 패기 각도와 이종재료의 기계적 성질에 의해 결정되는 응력특이성지수를 구하고 이에 대한 응력강도계수를 유한요소해석 프로그램인 ANSYS와 상반일 경로 적분법(RWCIM)을 이용하여 구하였다.

  • PDF

The Fatigue Behavior of Laser Weldment in Heterogeneous Materials (이종재료 레이저 용접부의 피로거동)

  • 권응관;오택열;곽대순;이종재
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.759-764
    • /
    • 1997
  • In this study, Fatigue behavior of laser weldment in heterogeneous materials was investigated. Fatigue strength test and fatigue crack propagation test were performed for specimens with laser weldment in heterogeneous materials, and hardness test was performed. From the fatigue strength test. it was observed that the difference of strength between heterogeneous materials had eflect on crack initiation position and fatigue limit. From the fatigue crack propagation test. it was observed that fatigue behavior of laser weldment in heterogeneous materials is different from that in same materials. The difference of strength between heterogeneous materials and laser weldment had effect on fatigue crack propagation rate.

  • PDF