• Title/Summary/Keyword: 이온 전극

Search Result 874, Processing Time 0.027 seconds

Cesium Ion-Selective Electrode Based on Upper-rim Calix[4]crown Ionophore (캘릭스 [4]크라운 유도체를 이온선택성 물질로 사용한 세슘이온 선택성 막전극)

  • Namgung, Miok;Ihm, Hyejae;Paek, Kyungsoo;Yun, Youngja
    • Analytical Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.428-432
    • /
    • 2000
  • A PVC membrane electrode based on upper-rim calix[4]crown as ionophore was prepared using dioctyl sebacate (DOS) as a plasticizer. The potential response of this membrane electrode to alkali, alkaline earth metal cations were examined. This membrane electrode exhibited a Nemstian response to $10^{-5}-10^{-1}M$ of CsCI with a slope of 52.3 mV/decade in Tris-buffer(pH 7.20). Its response time ($t_{90%}$) was 10s and it could be used for at least 2 months.

  • PDF

Hg(II) ion- Selective Electrodes with Neutral Carriers of Macrocycles (거대고리 중성 운반체를 갖는 Hg(II)이온 선택성 전극)

  • 정오진
    • Journal of Environmental Science International
    • /
    • v.5 no.2
    • /
    • pp.211-220
    • /
    • 1996
  • New thin-and diselena-crown ethers containing two suffer and selenium donor atoms have been prepared. And then, mercury ($Hg^{2+}$) ion-selective electrodes with PVC-plasticizer (STPB) based on some macrocycles as neutral carriers were also made. The electrochemical selectivities for various ions, and the effects for macrocycles, matrix of membranes, ratio of plasticizer to macrowcles, concentration and pH of test solution were investigated on the $Hg^{2+}$ ion-selective electrodes. The 1, 10-diselena-18-crown-6-PVC-STPB (sodium tetraphenylborate) exhibited good linear responses of ${28.2}\pm{0.6}$ decade-1 for $Hg^{2+}$ ion in the conientration ranges of $10^{-2}~10^{-6}$ M $Hg^{2+}$ ion. This electrode exhibited comparatively good selectivities for $Hg^{2+}$ ion in comparison with alkali and alkaline earth metal ions, some heavy metal ions and rare earth metal ion in the range of pH 2.5~6.0. In addition, this electrode was applied as a sensor in the titration of $Hg^{2+}$ ion with $1^-$ ion in water.

  • PDF

Characteristics and Preparation of Potassium Ion Selective Liquid Membrane Electrode Based on Polyurethane Matrix (폴리우레탄을 메트릭스로한 액막형 칼륨이온 선택성 전극의 제조 및 특성)

  • Kwang Sik Yoo;Yong Tack Lee;Chul Yong Kang
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.128-134
    • /
    • 1991
  • Previous matrices of potassium ion selective electrodes are generally based on PVC. In this study, however, the electrode membrane was prepared with polyurethane matrix containing potassium tetraphenyl borate as sensing materials and D-18-Crown-6 and 2-nitrophenyl-n-alkylethers as solvent mediator. The average life time of the K$^+$-selective electrode based on polyurethane was 75 days which is significantly longer than PVC based one. The slope factor in linear dynamic range ($1{\times}10^{-1}\;{\sim}\;1{\times}10^{-4}$ M) was 52 mV/decade. The electrode has been successfully applied to find end point in potentiometric titration of K$^+$ with tetraphenyl borate solution in the sea water, even in the presence of several interfering cations$(NH^{4+},\;Na^{+},\;Li^{+},\;Ca^{2+},\;Mg^{2+},\;Cu^{2+}$).

  • PDF

A Study on the Preparation of the Silver Selenide Electrode and Its Properties (Silver Selenide 전극의 제조 및 그 특성에 관한 연구)

  • Gwon-Shik Ihn;Tae-Won Min;Soo-Hyung Lee
    • Journal of the Korean Chemical Society
    • /
    • v.20 no.4
    • /
    • pp.280-289
    • /
    • 1976
  • The silver selenide electrode has been prepared and its properties as an indicating electrode for silver ion have been investigated. Epoxy resin was used as a filler of silver selenide electrode. Silver metal plate was directly connected with the membrane of the electrode and the silver paste was used as its binder. The sintered electrode was more sensitive and stable than the pressed electrode, and the silver selenide electrode more sensitive than the silver sulfide electrode to silver ion. The linear relationship between the electrode potential and logarithmic concentration of silver ion has been observed down to 10-6 M for the electrode. Several heavy metal ions except mercuric ion did not interfere this linearity, but halide, cyanide, and thiocyanate ions did intensively interfere owing to the formation of silver compounds and complexes. This electrode has been applied to the potentiometric titration for determining halide ion. It is concluded that interferences from ,$CN^-, SCN^-, S^-, I^-, Br^-, Cl^- and Hg^{2+}$ ions are detrimental to the practical use of the electrodes for measuring pAg.

  • PDF

The $Pb^{2+}$ Ion Affinitive Membrane Electrode Based on New Calix[4]arene Ionophore (새로운 캘릭스[4]아렌 유도체를 이용한 $Pb^{2+}$ 이온 친화성 막전극)

  • Kim, Eun Jin;Kim, Min Kyu;Nam Gung, Mi Ok;Paek, Kyung Soo;Yun, Young Ja
    • Journal of the Korean Chemical Society
    • /
    • v.42 no.5
    • /
    • pp.531-538
    • /
    • 1998
  • The ion selective membrane electrode made of calix[4]arene-based host 1 as ionophore, poly (vinyl chloride) (PVC) as matrix and dioctylsebacate (DOS) as a plasticizer was studied. The potential responses of this membrane electrode to alkali, alkaline earth and transition metal cations were investigated. Especially this membrane electrode was turned out to be affinitive for $Pb^{2+}$ in the deionized water. It was observed that the response was linear in the concentration range from $1.0 \times 10^{-1} M to 1.0 \times 10^{-6} M of Pb^{2+}$ and its slope (26.5 mV/decade) was near to the sub-Nernstian response in deionized water. Also, the potential was maintained constantly in the range of pH $4.00 \sim 12.00$, which supports the potential usage as $Pb^{2+}$ affinitive electrode in the deionized water.

  • PDF

이중 주파수 고주파 용량성 결합 플라즈마 장치의 전극 전압 전류 신호의 위상차 및 고조파 발생 특성 연구

  • Choe, Myeong-Seon;Kim, Gon-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.138-138
    • /
    • 2010
  • 이중 주파수를 이용한 고주파 용량성 결합 플라즈마 장치는 반도체 및 디스플레이 생산 공정에서 널리 사용되는 장치 형태이며 일반적으로 이온 플라즈마 주파수보다 높은 주파수의 고주파 전력과 이온 플라즈마 주파수보다 낮은 주파수의 저주파 전력을 인가하여 플라즈마 발생 밀도 및 입사 이온 에너지를 독립적으로 조절할 수 있다. 용량성 결합 플라즈마 장치에서는 전극의 쉬스 임피던스가 비선형적으로 변화함에 따라 전극의 전압, 전류 및 플라즈마 전위는 수많은 고조파를 포함하게 되며, 이중 주파수가 인가된 경우 이러한 고주파와 저주파 신호의 고조파가 상호 변조된 형태로 나타나게 된다. 본 연구에서는 주파수에 따른 이온의 거동 특성 차이를 이용하여 변조된 형태의 Lieberman의 비균일 RF쉬스 모델을 가정한 고주파 쉬스를 단순한 저주파 쉬스로 모사하였다. 단순화된 저주파 쉬스 임피던스를 이용한 회로 모델을 구성하여 100MHz와 2MHz RF전력을 사용하는 용량성 결합 플라즈마 장치에서 측정된 전극 전압, 전류 및 플라즈마 전위 신호의 위상차 및 고조파 발생 특성을 분석하였다.

  • PDF

Preparation of a Liquid Membrance Type Ion-Selective Electrode and Its Application to the Potentiometric Titration (액체막형 구리이온 선택성 전극의 제작과 전위차적정에의 응용)

  • Heung Lark Lee;Seung Tae Yang
    • Journal of the Korean Chemical Society
    • /
    • v.29 no.2
    • /
    • pp.137-143
    • /
    • 1985
  • Construction of a liquid membrane type of cupric ion selective electrode and its application to the potentiometric titration have been studied. A liquid ion-exchange membrance was prepared by extracting Cu(II) in aqueous solution into 1-(2-pyridylazo)-2-naphthol/nitrobenzene. A Ag/AgCl internal reference electrode was dipped into the aqueous reference solution of $1.00 {\times} 10^{-3}M\;Cu(NO_3)_2$ buffered with HAc-NaAc buffer solution, which was in contact with the nitrobenzene extract. The electrode showed the nernstian response to Cu(II) in the concentration range from $1.00{\times} 10^{-6}$ to $1.00{\times} 10^{-3}$M. The most suitable ion-exchanger concentration in the liquid membrane was $1.00{\times} 10^{-4}$M. The selectivity coefficients of the electrode for the various metal cations were investigated. The electrode was applied to the potentiometric titration of Cu(II) with EDTA.

  • PDF

Numerical Study of Electrolyte Wetting Phenomena in the Electrode of Lithium Ion Battery Using Lattice Boltzmann Method (격자 볼츠만법을 이용한 리튬이온전지의 전극내 전해액 함침현상에 관한 수치적 연구)

  • Lee, Sang Gun;Jeon, Dong Hyup
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.4
    • /
    • pp.357-363
    • /
    • 2014
  • The electrolyte wetting phenomena in the electrode of lithium ion battery is studied numerically using a multiphase lattice Boltzmann method (LBM). When a porous electrode is compressed during roll-pressing process, the porosity and thickness of the compressed electrode are changed, which can affect its wettability. In this study, the change in electrolyte distribution and degree of saturation as a result of varying the compression ratio are investigated with two-dimensional LBM approach. We found that changes in the electrolyte transport path are caused by a reduction in through-plane pore size and result in a decrease in the wettability of the compressed electrode.

Research Trend in Solid Lubricant Layered Materials for the High Performance Li-ion Batteries (층상구조 재료의 고체윤활작용을 이용한 고성능 리튬이온 전지 응용 연구동향)

  • Hur, Jaehyun
    • Prospectives of Industrial Chemistry
    • /
    • v.23 no.5
    • /
    • pp.12-20
    • /
    • 2020
  • 최근 층상구조를 가진 전이금속 칼코겐 화합물이 새로운 고성능 리튬이온전지 음극소재로서 주목받고 있다. 층상구조 물질들의 고성능 전극 소재 활용에 있어 박리를 이용한 정확한 층의 개수 조절은 전기화학 반응성을 증가시키고, 전극 필름 내에서의 균일한 거동을 위해서 매우 중요하다. 볼 밀링 공정은 이차전지 전극 소재 제조에 있어서 주로 물질의 분쇄나 고상 화학반응을 유도하여 합금 형태의 전극 소재 개발에 보편적으로 사용되는 공정이나, 층상구조를 가진 전이금속 칼코겐 화합물에 적용하면 층상구조 물질에 고체윤활작용을 일으켜 박리가 촉진된다. 이러한 성질을 이용하여 다양한 종류의 전이금속 칼코겐 화합물(예: MoS2, MoSe2, NbSe2)에 적절한 카본 매트릭스 물질과 복합화를 통해 새로운 전극 소재를 합성하고, 이를 통해 고성능 리튬이온전지 음극 소재를 제조하는 연구 동향에 대해 보고하고자 한다.

Structure Analysis of Li-ion Battery Using Neutron Beam Source (중성자를 이용한 리튬이온 이차전지 전극 구조분석)

  • Kim, Chang-Seob;Park, Heon-Yong;Liang, Lianhua;Kim, Ji-Young;Seong, Baek-Seok;Kim, Keon
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.1
    • /
    • pp.20-24
    • /
    • 2007
  • Lithium ion secondary battery has been applied widely to portable devices, and has been studied for application to high power electric cell system such as power tool or hybrid electronic vehicle. The structure change of the electrodes materials occur when lithium ions move between electrodes. Neutron or X-rays can analyze the structure of electrode. The advantage of X-rays is convenient in test. However X-rays is scattered by electron cloud in atoms. Therefore, The elucidation for correct position of lithium is difficult with X-rays because lithium has small atomic weight. Neutron analysis techniques could solve this problem. In this review, We wish to discuss about structure analysis and the principle of structural characterization method using neutron beam source.