DOI QR코드

DOI QR Code

Numerical Study of Electrolyte Wetting Phenomena in the Electrode of Lithium Ion Battery Using Lattice Boltzmann Method

격자 볼츠만법을 이용한 리튬이온전지의 전극내 전해액 함침현상에 관한 수치적 연구

  • Lee, Sang Gun (School of Mechanical and Aerospace Engineering, Seoul Nat'l Univ.) ;
  • Jeon, Dong Hyup (Dept. of Mechanical System Engineering, Dongguk Univ.-Gyeongju)
  • 이상건 (서울대학교 기계항공공학부) ;
  • 전동협 (동국대학교 기계부품시스템공학과)
  • Received : 2013.12.30
  • Accepted : 2014.01.28
  • Published : 2014.04.01

Abstract

The electrolyte wetting phenomena in the electrode of lithium ion battery is studied numerically using a multiphase lattice Boltzmann method (LBM). When a porous electrode is compressed during roll-pressing process, the porosity and thickness of the compressed electrode are changed, which can affect its wettability. In this study, the change in electrolyte distribution and degree of saturation as a result of varying the compression ratio are investigated with two-dimensional LBM approach. We found that changes in the electrolyte transport path are caused by a reduction in through-plane pore size and result in a decrease in the wettability of the compressed electrode.

리튬이온전지의 다공성 전극내에서 전해액 주입 후 발생하는 함침현상에 관하여 격자 볼츠만법을 이용하여 수치해석적으로 연구하였다. 다공성 전극은 전극 제조 중 압연공정을 거치므로 압축된 전극의 공극률과 두께변화가 발생하여 전해액 함침성에 영향을 미치게 된다. 본 연구에서는 2 차원 격자 볼츠만법을 통하여 압축률에 따른 전해액 분포와 포화도 변화를 제시하였다. 압축된 전극에서의 전해액 침투경로의 변화는 기공의 두께방향 크기 감소에 기인하며, 따라서 전극의 함침성이 크게 감소하였음을 확인하였다.

Keywords

References

  1. Park, J. K., 2010, "Principles and Applications of Lithium Secondary Batteries," Hongrung Pub. Co., pp.181-205.
  2. Kim, K.M., Jeon, W.S., Chung, I.J. and Chang, S.H., 1999, "Effect of Mixing Sequences on the Electrode Characteristics of Lithium-Ion Rechargeable Batteries," J. Power Sources, Vol. 83, pp. 108-113. https://doi.org/10.1016/S0378-7753(99)00281-5
  3. Cheon, S.E., Cho, J.H., Ko, K.S., Kwon, C.W., Chang, D.R., Kim, H.T. and Kim, S.W., 2002, "Structural Factors of Sulfur Cathodes with Poly(ethylene oxide) Binder for Performance of Rechargeable Lithium Sulfur Batteries," J. Electrochem. Soc., Vol. 149, pp. A1437-A1441. https://doi.org/10.1149/1.1511187
  4. Yu, S., Chung, T., Song, M.S., Nam, J.H. and Cho, W.I., 2012, "Investigation of Design Parameter Effects on High Current Performance of Lithium-Ion Cells with LiFePO4/Graphite Electrodes," J. Appl Electrochem., Vol. 42, pp. 443-453 https://doi.org/10.1007/s10800-012-0418-0
  5. Wu, M.-S., Liao, T.-L., Wang, Y.-Y. and Wan, C.-C., 2004, "Assessment of the Wettability of Porous Electrodes for Lithium-Ion Batteries," J. Appl. Electrochem., Vol. 34, pp. 797-805. https://doi.org/10.1023/B:JACH.0000035599.56679.15
  6. Lee, S.G., Jeon, D.H, Kim, B.M., Kang, J.H. and Kim, C.J., 2013, "Lattice Boltzmann Simulation for Electrolyte Transport in Porous Electrode of Lithium Ion Batteries," J. Electrochem. Soc., Vol. 160 pp. H258-H265. https://doi.org/10.1149/2.017306jes
  7. Zguris, G.C., 2000, "Fluid-Transfer Properties of Recombinant Battery Separator Media," J. Power Sources, Vol. 88, pp. 36-43. https://doi.org/10.1016/S0378-7753(99)00508-X
  8. Culpin, B., 1995, "Separator Design for Valve-Regulated Lead/Acid Batteries," J. Power Sources, Vol. 53, pp. 127-135. https://doi.org/10.1016/0378-7753(94)01982-2
  9. Shan, X. and Chen, H., 1993, "Lattice Boltzmann Model for Simulating Flows with Multiple Phases and Components," Phys. Rev. E, Vol. 47, pp. 1815-1819. https://doi.org/10.1103/PhysRevE.47.1815
  10. Shan, X. and Chen, H., 1994, "Simulation of Nonideal Gases and Liquid-Gas Phase Transitions by the Lattice Boltzmann Equation," Phys. Rev. E, Vol. 49 pp. 2941-2948. https://doi.org/10.1103/PhysRevE.49.2941
  11. Pan, C., Luo, L.-S and Miller, C.T., 2006, "An Evaluation of Lattice Boltzmann Schemes for Porous Medium Flow Simulation," Computers & Fluids, Vol. 35, pp. 898-909. https://doi.org/10.1016/j.compfluid.2005.03.008
  12. Tabe, Y., Lee Y., Chikahisa, T. and Kozakai, M., 2009, "Numerical Simulation of Liquid Water and Gas Flow in a Channel and a Simplified Gas Diffusion Layer Model of Polymer Electrolyte Membrane Fuel Cells Using the Lattice Boltzmann Method," J. Power Sources, Vol. 193, pp. 24-31. https://doi.org/10.1016/j.jpowsour.2009.01.068

Cited by

  1. Effect of Mixing Ratio of Active Material on the Wettability in Lithium-Ion Battery Using Lattice Boltzmann Method vol.40, pp.1, 2016, https://doi.org/10.3795/KSME-B.2016.40.1.047