DOI QR코드

DOI QR Code

Structure Analysis of Li-ion Battery Using Neutron Beam Source

중성자를 이용한 리튬이온 이차전지 전극 구조분석

  • 김창섭 (고려대학교 이과대학 화학과) ;
  • 박헌용 (고려대학교 이과대학 화학과) ;
  • 양연화 (고려대학교 이과대학 화학과) ;
  • 김지영 (고려대학교 이과대학 화학과) ;
  • 성백석 (한국원자력연구소) ;
  • 김건 (고려대학교 이과대학 화학과)
  • Published : 2007.02.28

Abstract

Lithium ion secondary battery has been applied widely to portable devices, and has been studied for application to high power electric cell system such as power tool or hybrid electronic vehicle. The structure change of the electrodes materials occur when lithium ions move between electrodes. Neutron or X-rays can analyze the structure of electrode. The advantage of X-rays is convenient in test. However X-rays is scattered by electron cloud in atoms. Therefore, The elucidation for correct position of lithium is difficult with X-rays because lithium has small atomic weight. Neutron analysis techniques could solve this problem. In this review, We wish to discuss about structure analysis and the principle of structural characterization method using neutron beam source.

최근 높은 에너지 밀도를 갖고 있는 리튬 이온 이차전지에 대한 관심이 높다. 리튬 이온 이차전지는 이미 휴대용 기기로 널리 적용되고 있으며, 하이브리드 전기자동차와 같은 고출력 전지시스템에 적용을 위해 연구되고 있다. 리튬 이온 이차전지의 전극 소재는 리튬 이온의 이동에 의해서 충전 및 방전되는 현상을 활용한다. 전극으로부터 리튬 이온이 이동될 때 전극내의 구조 변화가 발생한다. 전극의 구조분석은 중성자 또는 X-선을 이용하여 분석할 수 있다. X-선은 분석 시간이 짧고, 쉽게 분석할 수 있다는 장점이 있으나 원자내의 전자구름과의 산란을 응용하므로 전자가 적은 가벼운 원소의 경우 분석이 어려운 단점이 있다. 리튬도 원자량이 작아서 X-선 만으로는 리튬의 정확한 위치에 대한 분석이 어렵다. 중성자 분석기술은 이에 대한 해답이 될 것이다. 본 자료에서는 중성자를 활용한 전극물질의 구조 분석 사례 및 그 원리에 대해서 논의하고자 한다.

Keywords

References

  1. A. Robert Armstrong, Robert Gitzendanner, Alastair D. Robertson and Peter G. Bruce, The intercalation compound $Li(Mn_{0.9}Co_{0.1})O_{2}$ as a positive electrode for rechargeable lithium batteries, Chem. Commun., 1833-1834 (1998)
  2. A. R. Armstrong, A. D. Robertson, and P. G. Bruce, Structural transformation on cycling layered $Li(Mn_{1-y}Co_{y})O_{2}$ cathode materials, Electrochimica Acta, 45, 285-294 (1999) https://doi.org/10.1016/S0013-4686(99)00211-X
  3. A. D. Robertson, L. Trevino, H. Tukamoto, and J. T. S. Irvine, New inorganic spinel oxides for use as negative electrode materials in future lithium-ion batteries, Journal of Power Sources, 81, 82, 352-357 (1999) https://doi.org/10.1016/S0378-7753(98)00217-1
  4. Helena Herg, Hakan Rundlov, and John O. Thomas, The $LiMn_{2}O_{4}$ to $\lambda$-$MnO_{2}$ phase transition studied by in situ neutron diffraction, Solid State Ionics, 144, 65-69 (2001) https://doi.org/10.1016/S0167-2738(01)00894-3
  5. D. Carlier, I. Saadoune, L Croguennec, M. Manatrier, E suard, and C. Delmas, On the metastable $O_{2}$-type $LiCoO_{2}$, Solid State Ionics, 144, 263-276 (2001) https://doi.org/10.1016/S0167-2738(01)00982-1
  6. Hikari Shigemura, Mitsuharu Tabuchi, Hironori Kobayashi, Hikari Sakaebe, Atsushi Hirano, and Hiroyuki Kageyama, Structural and electrochemical properties of $Li(Fe,Co)_{x}Mn_{2-x}O_{4}$ solid solution as 5 V positive electrode materials for Li secondary batteries, Journal of Materials Chemistry, 12, 1882-1891 (2002) https://doi.org/10.1039/b200690c
  7. A. Robert Armstrong, Alastair D. Robertson, Robert Gitzendanner, and Peter G. Bruce, The Layered Intercalation Compounds $Li(Mn_{1-y}Co_{y})O_{2}$:Positive Electrode Materials for Lithium+Ion Batteries, Journal of Solid State Chemistry, 145, 549-556 (1999) https://doi.org/10.1006/jssc.1999.8216
  8. M. J. G. Jak, V. W. J. Verhoeven, I. M. de Schepper, F. M. Mulder, E. M. Kelder, and J. Schoonman, Neutron and X-ray scattering on Li-doped $BPO_{4}F$, Physica B, 266, 108-111 (1999) https://doi.org/10.1016/S0921-4526(98)01502-6
  9. Shigeto Okada, Mizuki Ueno, Yasushi Uebou, and Jun-ichi Yamaki, Fluoride phosphate $Li_{2}CoPO_{4}F$ as a high-voltage cathode in Li-ion batteries, Journal of Power Sources, 146, 565-569 (2005) https://doi.org/10.1016/j.jpowsour.2005.03.149
  10. C. Bellitto, E. M. Bauer, G. Righini, M. A. Green, W. R Branford, A. Antonini, and M. Pasquali, The effect of doping $LiMn_{2}O_{4}$ spinel on its use as a cathode in Li-ion batteries: neutron diffraction and electrochemical studies, Journal of Physics and Chemistry of Solids, 65, 29-37 (2004) https://doi.org/10.1016/j.jpcs.2003.09.003
  11. P. S. Whitfielda, I. J. Davidson, L. M. D. Cranswick, I. P. Swainson, and P. W. Stephens, Investigation of possible superstructure and cation disorder in the lithium battery cathode material $LiMn_{1/3}Ni_{1/3}Co_{1/3}O_{2}$ using neutron and anomalous dispersion powder diffraction, Solid State Ionics, 176, 463-471 (2005) https://doi.org/10.1016/j.ssi.2004.07.066
  12. Mineo Sato, Hirokazu Ohkawa, Kenji Yoshida, Mai Saito, Kazuyoshi Uematsu, and Kenji Toda, Enhancement of discharge capacity of $Li_{3}V_{2}(PO_{4})_{3}$ by stabilizing the orthorhombic phase at room temperature, Solid State Ionics, 135, 137-142 (2000) https://doi.org/10.1016/S0167-2738(00)00292-7
  13. Shinichi Komaba, Kenichi Oikawa, Seung-Taek Myung, Naoaki Kumagai, and Takashi Kamiyama, Neutron powder diffraction studies of $LiMn_{2-y}Al_{y}O_{4}$ synthesized by the emulsion drying method, Solid State Ionics, 149, 47-52 (2002) https://doi.org/10.1016/S0167-2738(02)00168-6
  14. Shinichi Komaba, Seung-Taek Myung, Naoaki Kumagai, Toru Kanouchi, Kenichi Oikawa, and Takashi Kamiyama, Hydrothermal synthesis of high crystalline orthorhombic $LiMnO_{2}$ as a cathode material for Li-ion batteries, Solid State Ionics, 152-153, 311-318 (2002)
  15. Tracey E. Quine, Morven J. Duncan, A. Robert Atmstrong, Alastair D. Robertson, and Peter G. Bruce, Layered $Li_{x}Mn_{1-y}Ni_{y}O_{2}$ intercalation electrodes, Journal of Materials Chemistry, 10, 2838-2841 (2000) https://doi.org/10.1039/b007429m
  16. Yuka Ito, Yasushi Idemoto, Yuka Tsunoda, and Nobuyuki Koura, Relation between crystal structures, electronic structures, and electrode performances of $LiMn_{2-x}M_{x}O_{4}$ (M=Ni, Zn)as a cathode active material for 4 V secondary Li batteries, Journal of Power Sources, 119-121, 733-737 (2003) https://doi.org/10.1016/S0378-7753(03)00212-X
  17. Won-Sub Yoon, Kyung-Keun Lee, Kwang-Bum Kim, Synthesis of $LiAl_{y}Co_{1-y}O_{2}$ using acrylic acid and its electrochemical properties for Li rechargeable batteries, Journal of Power Sources, 97-98, 303-307 (2001) https://doi.org/10.1016/S0378-7753(01)00596-1
  18. Martin Lanz, Eberhard Lehmann, Roman Imhof, Ivan Exnar, and Petr Novak, In situ neutron radiography of lithium-ion batteries during charge/discharge cycling, Journal of Power source, 101, 177-181 (2001) https://doi.org/10.1016/S0378-7753(01)00706-6
  19. C. Bellitto, M. G. DiMarco, W. R. Branford, M. A. Green, and D. A. Neumann, Cation distribution in Ga-doped $Li_{1.02}Mn_{2}0_{4}$, Solid State Ionics, 140, 77-81 (2001) https://doi.org/10.1016/S0167-2738(01)00710-X
  20. D. Goers, M. Holzapfel, W. Scheifele, E. Lehmann, P. Vontobel, and P. Novak, In situ neutron radiography of lithium-ion batteries: the gas evolution on graphite electrodes during the charging, Journal of Power Sources, 130, 221-226 (2004) https://doi.org/10.1016/j.jpowsour.2003.11.065