• Title/Summary/Keyword: 이온전도성

Search Result 488, Processing Time 0.03 seconds

Control of a- and c-plane Preferential Orientations of p-type CuCrO2 Thin Films

  • Kim, Se-Yun;Seong, Sang-Yun;Jo, Gwang-Min;Hong, Hyo-Gi;Kim, Jeong-Ju;Lee, Jun-Hyeong;Heo, Yeong-U
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.119-120
    • /
    • 2011
  • Kawazoe는 1997년 p-type TOS를 만들기 위해서는 3가지가 충족되어야 한다고 언급한바 있다. 첫 번째, 가시광영역에서 투명하기 위해서 cation의 d10s0이 가득 차야 한다. 가득 차지 않은 d10 shell은 광 흡수가 가능하여 투과도를 떨어뜨린다. N-type을 예로 들어 ZnO, TiO, In2O3가 각각 Zn2+, Ti4+, In3+가 되어 d shell을 가득 차게 만드는 것을 볼 수 있다. 두 번째, cation d10s0 shell은 산소의 2p shell과 overlap 되어야 한다. 이 valence band는 홀 전도를 더욱 좋게 한다. 예를 들어 Cu1+(3d), Ag1+(4d)가 해당한다. 세 번째로, 양이온과 산소간의 공유결합을 강하게 하기 위해서 결정학적 구조는 매우 중요하다. Delafossite 구조는 산소가 pseudo-tetrahedral 구조로서 공유결합에 유리하다. 이러한 환경은 O2- (2p6)을 형성하고 홀의 이동도를 증가시킨다. 예를 들어 Cu2O의 경우 앞의 2가지를 만족시키지만 광학적 특성에서 좋지 않다. 그 이유가 3번째 언급한 결정학적인 요인에 있다. 결정 계의 환경은 Cu2O를 따라가면서 3차원적인 연결을 2차원적으로 변형된 delafossite 구조에서는 quantum well이 형성되어 band gap이 커진다. 본 연구에서는 전기적 이방성을 가지고 있는 delafossite CuCrO2 상에서 우선배향을 일으키는 인자 중 기판을 변화시켜 실험을 진행하였다. 결과적으로 기판변화를 통해 우선배향조절이 가능하였으며 CuCrO2 박막을 시켰으며, 결정방향에 따른 전기적 물성의 이방성에 관한 연구는 계속 진행 중에 있다. c-plane sapphire 기판위에는 [00l]로 성장하는 반면, c-plane STO 기판 위에는 [015] 방향으로 성장하는 것을 확인하였다. 이러한 원인은 기판과 증착되는 박막간의 mismatch를 최소화 하여 strain을 줄이고, 계면에서의 Broken boning 수를 줄여 계면에너지를 낮추는 방법이기 때문일 것으로 예상된다. C-plane sapphire 기판위에 증착될 경우 증착온도가 증가함에 따라 c-축으로의 성장이 온전해지며 이에 따라 캐리어농도의 감소와 모빌리티의 증가가 급격하게 변하는 것을 확인할 수 있다. 반면 c-plane STO 기판에서는 증착온도에 따른 박막의 배향변화가 없으며 전기적 물성 변화 또한 비교적 작은 것을 간접적으로 확인하였다.

  • PDF

Variations of Complex Permittivity due to Water Content and Heavy Metal Contamination (함수비와 중금속 오염도에 따른 유전상수의 변화)

  • Oh Myoun-Hak;Kim Yong-Sung;Yoo Dong-Ju;Park Jun-Boum
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.5
    • /
    • pp.231-241
    • /
    • 2005
  • Laboratory experiments were performed to examine the effects of water content and to see if permittivity had sufficient sensitivity to identify subsurface contamination. Both real and imaginary permittivities of unsaturated sand were strongly governed by the volumetric water content. Especially, a linear relationship between real permittivity and volumetric water content was derived at high frequencies (MHz ranges). Heavy metals in pore fluid result in significant increases in the effective imaginary permittivity, due to ionic conduction, but decreases in the real permittivity arises due to the decreased orientational polarization of water molecules caused by hydration of ions. Clear increase in the effective imaginary permittivity with heavy metal concentration was found to be valuable in the application of electrical methods for detecting heavy metals in the subsurface. However, because the permittivity is primarily dependent on the volumetric water content of soil, pre-evaluation on the volumetric water content is required.

Preparation of Composite Nafion/polyphenylene Oxide(PPO) with Hetropoly Acid(HPA) Membranes for Direct Methanol Fuel Cells (헤테로폴리산을 포함한 직접 메탄올 연료전지용 나피온/폴리페닐렌옥사이드 복합막의 제조)

  • Kim, Donghyun;Sauk, Junho;Kim, Hwayong;Lee, Kab Soo;Sung, Joon Yong
    • Korean Chemical Engineering Research
    • /
    • v.44 no.2
    • /
    • pp.187-192
    • /
    • 2006
  • The preparation and characterization of new polymer composite membranes containing polyphenylene oxide (PPO) thin films with hetropoly acid (HPA) are presented. PPO thin films with phosphotungstic acid (PWA) or phosphomolybdic acid (PMA) have been prepared by using the solvent mixture. The PWA and PPO can be blended using the solvent mixture, because PPO and PWA are not soluble in the same solvent. In this study, methanol was used as a solvent dissolving PWA and chloroform was used as a solvent dissolving PPO. PPO-PWA solutions were cast onto a glass plate with uniform thickness. The composite membranes were prepared by casting Nafion mixture on porous PPO-PWA films. The morphology and structure of these PPO-PWA films were observed with scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS). The composite membranes were characterized by measuring their ion conductivity and methanol permeability. The performance was evaluated with composite membranes as electrolytes in fuel cell conditions. The methanol cross-over of composite membranes containing PPO-PWA barrier films in the DMFC reduced by 66%.

Ionomer Binder in Catalyst Layer for Polymer Electrolyte Membrane Fuel Cell and Water Electrolysis: An Updated Review (고분자 전해질 연료전지 및 수전해용 촉매층의 이오노머 바인더)

  • Park, Jong-Hyeok;Akter, Mahamuda;Kim, Beom-Seok;Jeong, Dahye;Lee, Minyoung;Shin, Jiyun;Park, Jin-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.4
    • /
    • pp.174-183
    • /
    • 2022
  • Polymer electrolyte fuel cells and water electrolysis are attracting attention in terms of high energy density and high purity hydrogen production. The catalyst layer for the polymer electrolyte fuel cell and water electrolysis is a porous electrode composed of a precious metal-based electrocatalyst and an ionomer binder. Among them, the ionomer binder plays an important role in the formation of a three-dimensional network for ion conduction in the catalyst layer and the formation of pores for the movement of materials required or generated for the electrode reaction. In terms of the use of commercial perfluorinated ionomers, the content of the ionomer, the physical properties of the ionomer, and the type of the dispersing solvent system greatly determine the performance and durability of the catalyst layer. Until now, many studies have been reported on the method of using an ionomer for the catalyst layer for polymer electrolyte fuel cells. This review summarizes the research results on the use of ionomer binders in the fuel cell aspect reported so far, and aims to provide useful information for the research on the ionomer binder for the catalyst layer, which is one of the key elements of polymer electrolyte water electrolysis to accelerate the hydrogen economy era.

Study on Formation and Properties of Dioxomolybdenum Complexes (디옥소몰리브덴 착물의 합성과 그 성질에 대한 연구)

  • Sang-Oh Oh;Bon-Kweon Koo
    • Journal of the Korean Chemical Society
    • /
    • v.30 no.5
    • /
    • pp.441-448
    • /
    • 1986
  • Dioxobis(sub.-salicylaldiminato) molybdenum (VI) complexes, $MoO_2\;(X-sal-N-R)_2,\;(X=H,\;5-CH_3,\;R=C_6H_5,\;p-F-C_6H_4,\;m-Cl-C_6H_4,p-I-C_6H_4\;and\;p-C_2H_5-C_6H_4)$, have been prepared by reactions of dioxobis(sub.-salicylaldehydato) molybdenum (VI), $MoO_2(X-sal)_2$ with primary amines, in which $MoO_2(X-sal)_2$ complexes were obtained by acidification of a mixture solution of ammonium paramolybdate in water and appropriate salicylaldehyde in methanol. All these complexes show two strong Mo=O stretching imodes in the 900-940$cm^{-1}$ and p.m.r. spectra exhibited only one signal for the azomethine group. These results confirmed that the complexes are six-coordinated octahedron with a $cis-MoO_2$ group and the geometrical configurations of the complexes possess a C2 axis of symmetry. From the mass analyses of the complexes, it found that the composition ratios of $MoO_2$ : ligand are 1 : 2. The charge transfer transition corresponding to N-Mo, and O-Mo occured at 29,000$cm^{-1}$ and 32,000$cm^{-1}$ respectively. Where, the complexes were found to be non-ionic materials by conductivity measurements in dimethylformamide.

  • PDF

Fabrication and Evaluation Properties of Micro-Tubular Solid Oxide Fuel Cells (SOFCs) (마이크로 원통형 SOFC 제작 및 특성평가)

  • Kim, Hwan;Kim, Wan-Je;Lee, Jong-Won;Lee, Seung-Bok;Lim, Tak-Hyoung;Park, Seok-Joo;Song, Rak-Hyun;Shin, Dong-Ryul
    • Korean Chemical Engineering Research
    • /
    • v.50 no.4
    • /
    • pp.749-753
    • /
    • 2012
  • In present work, anode support for micro-tubular SOFC was fabricated with outer diameter of 3 mm and characterized with microstructure, mechanical properties and gas permeability. The microstructure of surface and cross section of a porous anode support were analyzed by using SEM (Scanning Electron Microscope) image. The gas permeability and the mechanical strength of anode support was measured and analysed by using differential pressure at the flow rates of 50, 100, 150 cc/min. and using universal testing machine respectively. The unit cell composed of NiO-YSZ, YSZ, YSZ-LSM/LSM/LSCF was fabricated and operated with reaction temperature and fuel flow rate and showed maximum power density of $1095mW/cm^2$ on the condition of $800^{\circ}C$. The performance of single cell for micro-tubular SOFC increased with the increasing the reaction temperature due to the decrement of ohmic resistance of cell by the increment of the ionic conductivity of electrolyte through the evaluation of electrochemical impedance analysis for single cell with reaction temperature.

Synthesis and Characterization of Some Transition Metal Complexes of Unsymmetrical Tetradentate Schiff Base Ligand (비대칭 Tetradentate Schiff 염기 리간드의 전이금속 착물에 대한 합성 및 특성)

  • Munde, A. S.;Jagdale, A. N.;Jadhav, S. M.;Chondhekar, T. K.
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.4
    • /
    • pp.407-414
    • /
    • 2009
  • The solid complexes of Cu(II), Ni(II), Co(II), Mn(II) and Fe(III) with 4-hydroxy-3-(1-{2-(2-hydroxybenzylidene)- amino phenylimino}-ethyl)-6-methy-pyran-2-one (H2L) derived from o-phenylenediamine, 3-acetyl- 6-methyl-(2H) pyran, 2,4 (3H)-dione (dehydroacetic acid or DHA) and salicylic aldehyde have been synthesized and characterized by elemental analysis, conductometry, magnetic susceptibility, UV-visible, IR, $^1H$-NMR spectra, X-ray diffraction, thermal analysis, and screened for antimicrobial activity. The IR spectral data suggest that the ligand behaves as a dibasic tetradentate ligand with ONNO donor atoms sequence towards central metal ion. From the microanalytical data, the stoichiometry of the complexes has been found to be 1:1 (metal: ligand). The physico-chemical data suggests square planar geometry for Cu(II) and Ni(II) complexes and octahedral geometry for Co(II), Mn(II) and Fe(III) complexes. The x-ray differaction data suggests orthorhombic crystal system for Cu(II) complex, monoclinic crystal system for Ni(II), Co(II) and Fe(III) and tetragonal crystal system for Mn(II) complex. Thermal behaviour (TG/DTA) of the complexes was studied and kinetic parameters were determined by Coats-Redfern method. The ligand and their metal complexes were screened for antibacterial activity against Staphylococcus aureus and Escherichia coli and fungicidal activity against Aspergillus Niger and Trichoderma.

Synthesis, Physico-Chemical and Biological Properties of Complexes of Cobalt(II) Derived from Hydrazones of Isonicotinic Acid Hydrazide (Isonicotinic Acid Hydrazide의 Hydrazone으로부터 유도된 코발트(II) 착물의 합성, 물리-화학 및 생물학적 성질)

  • Prasad, Surendra;Agarwal, Ram K.
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.1
    • /
    • pp.17-26
    • /
    • 2009
  • Hydrazones of isonicotinic acid hydrazide, viz., N-isonicotinamido-furfuralaldimine (INH-FFL), N-isonicotnamido-cinnamalidine (INH-CIN) and N-isonicotnamido-3',4',5'-trimethoxybenzaldimine (INH-TMB) were prepared by reacting isonicotinic acid hydrazide with respective aromatic aldehydes, i.e., furfural, cinnamaldehyde or 3,4,5-trimethoxy-benzaldehyde. A new series of fifteen complexes of cobalt(II) with these new hydrazones, INH-FFL, INH-CIN and INH-TMB, were synthesized by their reaction with cobalt(II) salts. The infrared spectral data reveal that hydrazone ligands behave as a bidentate ligand with N, O donor sequence towards the $Co^{2+}$ ion. The complexes were characterized on the basis of elemental analysis, magnetic susceptibility, conductivity, infrared and electronic spectral measurements. Analytical data reveal that the complexes have general composition [Co($L)_2X_2]\;and\;[Co(L)_3](ClO_4)_2$ where L= INH-FFL, INH-CIN or INH-TMB and X = $Cl^-,{NO_3}-,\;NCS^-\;or\;CH_3COO^-.$ The thermal behaviour of the complexes were studied using thermogravimetrictechnique. Electronic spectral results and magnetic susceptibility measurements are consistent with the adoption of a six-coordinate geometry for the cobalt(II) chelates. The antimicrobial properties of cobalt(II) complexes and few standard drugs have revealed that the complexes have very moderate antibacterial activities.

Cycle Performances of Spinel-type $Li_xMn_2O_4$ in 4V Lithium Rechargeable Cells (리튬 2차 전지의 양극재료로 사용되는 스피넬형 망간산화물의 충방전 특성)

  • Jang, Dong H.;Oh, Seung M.
    • Journal of the Korean Chemical Society
    • /
    • v.42 no.1
    • /
    • pp.122-134
    • /
    • 1998
  • In this review, we describe the electrochemical properties of spinel-type lithium manganese oxides $(Li_xMn_2O_4)$ and their failure modes encountered in 4 V lithium rechargable cells. The long-term cyclability (reversibility) of spinel electrodes is determined partly by the purity, size and distribution of spinel particles, and also by the microstructure of electrode plates. A proper selection of electrolytes is another important task in cyclability enhancements. In the spinel preparation, impurity formation and cation mixing should be minimized. The carbon content in composite cathodes should also be minimized to the extent where the cell polarization does not bring about adverse effects on cell performances. The binder content should be optimized on the basis of dispersion of component materials and mechanical strength of the plates. Cathodic capacity losses arising from solvent oxidation and spinel dissolution can be mitigated by using electrolytes composed of carbonates and/or fluorine-containing lithium salts. The carbon additives may be selected after a trade-off between the cell polarization in composite cathodes and the solvent oxidation on carbon surface.

  • PDF

The Effect of LSC/GDC (50 : 50 vol%) Active Layers on Oxygen Transport Properties of LSCF/GDC (20 : 80 vol%) Dual-phase Membrane (LSC/GDC (50 : 50 vol%) 활성층이 LSCF/GDC (20 : 80 vol%) 복합 분리막의 산소투과 거동에 미치는 영향)

  • Cha, Da-Som;Yoo, Chung-Yul;Joo, Jong Hoon;Yu, Ji Haeng;Han, Moon-Hee;Cho, Churl-Hee
    • Membrane Journal
    • /
    • v.24 no.5
    • /
    • pp.367-374
    • /
    • 2014
  • In the present study, disc-type LSCF/GDC (20 : 80 vol%) dual-phase membranes having porous LSC/GDC (50 : 50 vol%) active layers were prepared and effect of active layers on oxygen ion transport behavior was investigated. Introduction of active layers improved drastically oxygen flux due to enhanced electron conductivity and oxygen surface exchange activity. As firing temperature of active layer increased from $900^{\circ}C$ to $1000^{\circ}C$, oxygen flux increased due to improved contact between membrane and active layer or between grains of active layer. The enhanced contact would improve oxygen ion and electron transports from active layer to membrane. Also, as thickness of active layer increased from 10 to $20{\mu}m$, oxygen flux decreased since thick active layer rather prevented oxygen molecules diffusing through the pores. And, STF infiltration improved oxygen flux due to enhanced oxygen reduction reaction rate. The experimental data announces that coating and property control of active layer is an effective method to improve oxygen flux of dual-phase oxygen transport membrane.