Browse > Article
http://dx.doi.org/10.5012/jkcs.2009.53.4.407

Synthesis and Characterization of Some Transition Metal Complexes of Unsymmetrical Tetradentate Schiff Base Ligand  

Munde, A. S. (Department of Chemistry, Milind College of Science)
Jagdale, A. N. (Department of Chemistry, D. P. College)
Jadhav, S. M. (Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University)
Chondhekar, T. K. (Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University)
Publication Information
Abstract
The solid complexes of Cu(II), Ni(II), Co(II), Mn(II) and Fe(III) with 4-hydroxy-3-(1-{2-(2-hydroxybenzylidene)- amino phenylimino}-ethyl)-6-methy-pyran-2-one (H2L) derived from o-phenylenediamine, 3-acetyl- 6-methyl-(2H) pyran, 2,4 (3H)-dione (dehydroacetic acid or DHA) and salicylic aldehyde have been synthesized and characterized by elemental analysis, conductometry, magnetic susceptibility, UV-visible, IR, $^1H$-NMR spectra, X-ray diffraction, thermal analysis, and screened for antimicrobial activity. The IR spectral data suggest that the ligand behaves as a dibasic tetradentate ligand with ONNO donor atoms sequence towards central metal ion. From the microanalytical data, the stoichiometry of the complexes has been found to be 1:1 (metal: ligand). The physico-chemical data suggests square planar geometry for Cu(II) and Ni(II) complexes and octahedral geometry for Co(II), Mn(II) and Fe(III) complexes. The x-ray differaction data suggests orthorhombic crystal system for Cu(II) complex, monoclinic crystal system for Ni(II), Co(II) and Fe(III) and tetragonal crystal system for Mn(II) complex. Thermal behaviour (TG/DTA) of the complexes was studied and kinetic parameters were determined by Coats-Redfern method. The ligand and their metal complexes were screened for antibacterial activity against Staphylococcus aureus and Escherichia coli and fungicidal activity against Aspergillus Niger and Trichoderma.
Keywords
Dehydroacetic acid; Unsymmetrical tetradentate Schiff Base; Transition metal complexes; Thermal analysis; Powder X-ray diffraction;
Citations & Related Records

Times Cited By SCOPUS : 4
연도 인용수 순위
1 Impura, A.; Inoue, Y.; Yasumori, I. Bull. Chem. Soc. Jpn. 1983, 56, 2203.   DOI   ScienceOn
2 Carvajal, J. R. Roisnel, T. Winplotr, A Graphic Tool for Powder Diffraction Laborataire leon brillouin (ceal/enrs) 91191 gif suryvette cedex, 2004, France.
3 Shoemaker D. P.; Garland C.W. Experiments in Physical Chemistry, 5th edn, McGraw-Hill International Edition, New York, 1989, pp 17-27.
4 Deshmukh M.B., Dhongade-Desai S.; Chavan S. S. Indian J. Chem. 2005, 44, 1659.
5 Mane P. S., Shirodkar S. G., Arbad B. R. and Chondhekar T. K. Indian J. Chem. 2001, 40, 648.   DOI   ScienceOn
6 Mishra L.; Singh V.K. Indian. J. Chem. 1993, 32A, 446.
7 Dharamraj N. Viswanathamurthi P.; Natarajan K. Transition Met. Chem 2001, 26, 105.   DOI   ScienceOn
8 Coats, A. W.; Redfern, I. P. Nature 1964, 20, 68.
9 El-Awad, A. M. J. Therm. Anal. Cal. 2000, 61, 197.   DOI
10 Qayyoom, M. A.; Hanumanthu, P.; Ratnam, C. V. Indian J. Chem. 1982, 21B, 883.
11 Ramarao, N.; Rao, V. P.; Tyaga, R. V. J.; Ganorkar, M. C., Indian J. Chem. 1985, 24A, 877.
12 Tan, S. F.; Ang, K. P.; Jatchandran, H. L. Transition Met. Chem. 1984, 9, 390-395.   DOI
13 Venketeswar, R. P.; Venkata, N. A. Indian J. Chem. 2003, 42A, 896.
14 Raman, N.; Pitchaikaniraja, Y.; Kulandaisamy, A. P. Indian Acad. Sci.(Chem. Sci.) 2001, 113(3), 183-189.   DOI
15 Dash, D. C.; Panda, A. K.; Jena, P.; Patjoshi, S. B.; Mahapatra, A. J. Indian Chem. Soc. 2002, 79, 48-50.
16 Natrajan, R.; Antonysamy, K.; Thangaraja, C. Transition Met. Chem. 2003, 28, 29-36.   DOI   ScienceOn
17 Nakamoto, K. Infrared Spectra of Inorganic and Coordination Compounds (Wiley Interscience, New York), 1970, pp 159, 167, 214.
18 Reddy, K. M.; Halli, M. B.; Hiremath, A. C. J. Indian Chem. Soc. 1994, 17, 118.
19 Mokhle,s A.-E. M. J. Chinese Chem. Soc. 2001, 48, 153-158.   DOI
20 Lever, A. B. P. Inorganic Electronic Spectroscopy Elsevier, Amsterdam, 1968, pp 275-361.
21 Satpathy, K.C.; Panda, A. K.; Mishra, R.; Pande, I. Transition Met. Chem. 1991, 16, 410.   DOI
22 Sacconi, L.; Transition Met. Chem. 1968, 61, 943.
23 Patel, M. N.; Patel, V. J. Synth. React. Inorg. Met. Org. Chem. 1989, 19, 137.   DOI
24 Bhave, N. S.; Kharat, R. B. J. Inorg. Nucl. Chem. 1980, 42, 977.   DOI   ScienceOn
25 Revankar, V. K.; Mahale, V. B. Indian J. Chem. 1979, 28A, 683.
26 Ohashi, Y. Bull. Chem. Soc. Jpn. 1997, 70, 1319.   DOI   ScienceOn
27 Atkins, R.; Brewer, G.; Kokot. E.; Mockler, G. M.; Sinn, E. Inorg. Chem. 1985, 24, 127.   DOI
28 Yuan, R.; Chai, Y.; Liu, D.; Gao, D.; Li, J.; Yu, R. Anal. Chem. 1993, 65, 2572.   DOI   ScienceOn
29 Ramesh, R.; Saganthy, P. K.; Natarajan, K. Synth. React. Inorg. Met-Org. Chem. 1996, 26, 47-60.   DOI
30 Jeong, B.-G.; Rim, C.-P.; Chae, H.-N.; Chjo, K.-H.; Nam, K.-C.; Choi, Y.-K. Bull. Korean Chem. Soc. 1996, 17, 688.
31 Singh, P.; Geol, R. L.; Singh, B. P. J. Indian Chem. Soc. 1975, 52, 958.
32 Mahindru, A.; Fisher, J. M.; Rabinovitz, M. Nature 1983, 303, 64.   DOI   ScienceOn
33 Patel, P. R.; Thaker, B. T.; Zele, S. Indian J. Chem. 1999, 38A, 563.
34 Phan, N. T. S.; Brown, D. H.; Adams, H.; Spey, S. E.; Styring, P. Dalton Trans. 2004, 9, 1348.
35 Tan, S. F.; Ang, K. P. Transition Met. Chem. 1988, 13, 64-68.   DOI
36 Marzilli, L. G.; Marzilli, P. A.; Halpern, J. J. Am. Chem. Soc. 1971, 93, 1374.   DOI
37 Jha, N. K.; Joshi, D. M. Synth. React. Inorg. Met-Org. Chem. 1984, 14, 455.   DOI   ScienceOn